Merging Incommensurable Possibilistic *DL-Lite*Assertional Bases

S. Benferhat¹ Z. Bouraoui¹ S. Lagrue¹ J. Rossit²

- ¹ CRIL-CNRS, Univ. d'Artois, {benferhat,bouraoui,lagrue}@cril.fr,
- ² LIPADE, Univ Paris Descartes, julien.rossit@parisdescartes.fr

Motivations

3 main notions

- Merging multiple-source uncertain information
- Incommensurability of uncertainty scales
 - Assessment marks
 - marked on the 0-100 scale
 - marked on the 0-20 scale
 - Using qualitative scale : A+, A, A-, etc
- Lightweight ontologies (DL-lite)

Which language to use?

Each knowledge base format is suitable for some applications

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations
- Always, one needs to reach for a good compromise between expressiveness and computational issues.

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations
- Always, one needs to reach for a good compromise between expressiveness and computational issues.

Nice features of DL-Lite

A reasonable expressive language

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations
- Always, one needs to reach for a good compromise between expressiveness and computational issues.

Nice features of DL-Lite

- A reasonable expressive language
- DL-lite logics are appropriate for applications where queries need to be efficiently handled

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations
- Always, one needs to reach for a good compromise between expressiveness and computational issues.

Nice features of DL-Lite

- A reasonable expressive language
- DL-lite logics are appropriate for applications where queries need to be efficiently handled
- Tractable methods for computing conflicts.

DL-lite: vocabulary

The starting points are N_C , N_R and N_I , three pairwise disjoint sets:

DL-lite: vocabulary

The starting points are N_C , N_R and N_I , three pairwise disjoint sets :

• set of atomic concepts,

DL-lite: vocabulary

The starting points are N_C , N_R and N_I , three pairwise disjoint sets:

- · set of atomic concepts,
- set of atomic roles and

DL-lite: vocabulary

The starting points are N_C , N_R and N_I , three pairwise disjoint sets:

- set of atomic concepts,
- set of atomic roles and
- set of individuals.

DL-lite: vocabulary

The starting points are N_C , N_R and N_I , three pairwise disjoint sets:

- · set of atomic concepts,
- set of atomic roles and
- set of individuals.

ABOX

Let a and b be two individuals. An ABox is a set of:

Membership assertions on atomic concepts:

A(a)

DL-lite: vocabulary

The starting points are N_C , N_R and N_I , three pairwise disjoint sets:

- · set of atomic concepts,
- set of atomic roles and
- set of individuals.

ABOX

Let a and b be two individuals. An ABox is a set of:

Membership assertions on atomic concepts:

membership assertions on atomic roles:

DL-lite: unary connectors

To define complex concepts and roles:

DL-lite: unary connectors

To define complex concepts and roles:

• ¬ (negated concepts or roles),

DL-lite: unary connectors

To define complex concepts and roles:

- ¬ (negated concepts or roles),
- $\bullet \ \exists$ (set of individuals obtained by projection on the first dimension of a role)

DL-lite: unary connectors

To define complex concepts and roles:

- ¬ (negated concepts or roles),
- \exists (set of individuals obtained by projection on the first dimension of a role)
- (inverse relation)

DL-lite: unary connectors

To define complex concepts and roles:

- ¬ (negated concepts or roles),
- \exists (set of individuals obtained by projection on the first dimension of a role)
- (inverse relation)

TBOX of DL-lite core

DL-Lite_{core} TBox consists of a set of concept inclusion assertions:

$$B_1 \sqsubseteq B_2, \qquad \qquad B_1 \sqsubseteq \neg B_2,$$

with

DL-lite: unary connectors

To define complex concepts and roles:

- ¬ (negated concepts or roles),
- ∃ (set of individuals obtained by projection on the first dimension of a role)
- (inverse relation)

TBOX of DL-lite core

DL-Lite_{core} TBox consists of a set of concept inclusion assertions:

$$B_1 \sqsubseteq B_2, \qquad \qquad B_1 \sqsubseteq \neg B_2,$$

with

$$B_i \longrightarrow A \mid \exists P \mid \exists P^-$$

Contexte

• DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL}\text{-Lite and } \alpha \in]0, 1]\}$

Contexte

- DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL-Lite} \text{ and } \alpha \in]0, 1]\}$
- Input : $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite^{π}

Contexte

- DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL}\text{-Lite and } \alpha \in]0, 1]\}$
- Input : $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite^{π}
- Output : weighted DL-lite base $\Delta(E) = \mathcal{T} \cup \mathcal{A}$

Contexte

- DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL}\text{-Lite and } \alpha \in]0, 1]\}$
- Input : $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite^{π}
- Output : weighted DL-lite base $\Delta(E) = T \cup A$

Assumptions

• Sources share the same ontology : $T_1 = ... = T_n$

Contexte

- DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL}\text{-Lite and } \alpha \in]0, 1]\}$
- Input : $E = \{K_1, ..., K_n\}$ where $K_i = T_i \cup A_i$ is a DL-Lite^{π}
- Output : weighted DL-lite base $\Delta(E) = \mathcal{T} \cup \mathcal{A}$

Assumptions

- Sources share the same ontology : $T_1 = ... = T_n$
- $T = T_i$ is viewed as a constraint (degree = 1)

Contexte

- DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL}\text{-Lite and } \alpha \in]0, 1]\}$
- Input : $E = \{K_1, ..., K_n\}$ where $K_i = T_i \cup A_i$ is a DL-Lite^{π}
- Output : weighted DL-lite base $\Delta(E) = \mathcal{T} \cup \mathcal{A}$

Assumptions

- Sources share the same ontology : $T_1 = ... = T_n$
- $T = T_i$ is viewed as a constraint (degree = 1)
- Each $\mathcal{T}_i \cup \mathcal{A}_i$ is consistent

Contexte

- DL-Lite^{π} : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \mathsf{DL}\text{-Lite and } \alpha \in]0, 1]\}$
- Input : $E = \{K_1, ..., K_n\}$ where $K_i = T_i \cup A_i$ is a DL-Lite^{π}
- Output : weighted DL-lite base $\Delta(E) = T \cup A$

Assumptions

- Sources share the same ontology : $\mathcal{T}_1 = ... = \mathcal{T}_n$
- $T = T_i$ is viewed as a constraint (degree = 1)
- Each $\mathcal{T}_i \cup \mathcal{A}_i$ is consistent
- Sources do not share the same uncertainty scale

Principle

• If $A_1 \cup A_2 \cup ... \cup A_n$ is consistent with T, then

$$\Delta_\pi^\mathcal{T}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$$

Principle

• If $A_1 \cup A_2 \cup ... \cup A_n$ is consistent with T, then

$$\Delta_{\pi}^{\mathcal{T}}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$$

• For each source i, rank-order the interpretations \mathcal{I} with respect to the highest assertion that is rejected from A_i .

Principle

• If $A_1 \cup A_2 \cup ... \cup A_n$ is consistent with T, then

$$\Delta_\pi^\mathcal{T}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$$

- For each source i, rank-order the interpretations \mathcal{I} with respect to the highest assertion that is rejected from A_i .
- · More precisely:

$$\pi_i(\mathcal{I}) = 1 - max\{f : f \in \mathcal{A}_i, \mathcal{I} \not\models f\}.$$

Principle

• If $A_1 \cup A_2 \cup ... \cup A_n$ is consistent with T, then

$$\Delta_\pi^\mathcal{T}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$$

- For each source i, rank-order the interpretations \mathcal{I} with respect to the highest assertion that is rejected from A_i .
- · More precisely:

$$\pi_i(\mathcal{I}) = 1 - max\{f : f \in \mathcal{A}_i, \mathcal{I} \not\models f\}.$$

• Combine π_i 's (with the minimum operation) to select the result of merging.

Possibilistic merging

Example

- $\mathcal{T} = \{ A \sqsubseteq B, B \sqsubseteq \neg C \}$
- $A_1 = \{(A(a), .6) (C(b), .5)\}$
- $A_2 = \{ (C(a), .4) (B(b), .8), (A(b), .7) \}.$

\mathcal{I}	\mathcal{I}	$\pi_{\mathcal{A}_1}$	$\pi_{\mathcal{A}_2}$	$\Delta^{min}_{\mathcal{T}}(\mathcal{A})$
\mathcal{I}_1	$A=\{a\},B=\{a\},C=\{b\}$	1	.2	.2
\mathcal{I}_2	$A=\{\},B=\{\},C=\{a,b\}$.4	.2	.4
\mathcal{I}_3	$A=\{a,b\},B=\{a,b\},C=\{\}$.5	.6	.5
\mathcal{I}_4	$A = \{b\}, B = \{b\}, C = \{a\}$.4	1	.4

Possibilistic merging

Example

- $\mathcal{T} = \{ A \sqsubseteq B, B \sqsubseteq \neg C \}$
- $A_1 = \{(A(a), .6) (C(b), .5)\}$
- $A_2 = \{ (C(a), .4) (B(b), .8), (A(b), .7) \}.$

\mathcal{I}	$\dot{\mathcal{I}}$	$\pi_{\mathcal{A}_1}$	$\pi_{\mathcal{A}_2}$	$\Delta^{ extit{min}}_{\mathcal{T}}(\mathcal{A})$
\mathcal{I}_1	$A=\{a\},B=\{a\},C=\{b\}$	1	.2	.2
\mathcal{I}_2	$A=\{\},B=\{\},C=\{a,b\}$.4	.2	.4
\mathcal{I}_3	$A = \{a,b\}, B = \{a,b\}, C = \{\}$.5	.6	.5
\mathcal{I}_4	$A=\{b\},B=\{b\},C=\{a\}$.4	1	.4

•
$$[\Delta_{\mathcal{T}}^{min}(\mathcal{A})] = \mathcal{I}_3$$

At the syntactic level

Methoc

At the syntactic level

Method

- Define : A_{\oplus} = $A_1 \cup A_2 \cup ... \cup A_n$
- **Compute** $x = Inc(\mathcal{T} \cup \mathcal{A}_{\oplus})$

At the syntactic level

Methoc

- Define : \mathcal{A}_{\oplus} = $\mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$
- Compute $x=Inc(\mathcal{T}\cup\mathcal{A}_{\oplus})$

At the syntactic level

Method

- Define : A_{\oplus} = $A_1 \cup A_2 \cup ... \cup A_n$
- Compute $x=Inc(\mathcal{T}\cup\mathcal{A}_{\oplus})$

Remarks

• Computing $\Delta_{\pi}^{\mathcal{T}}(E)$ is done in a polynomial time.

At the syntactic level

Method

- Define : A_{\oplus} = $A_1 \cup A_2 \cup ... \cup A_n$
- Compute $x=Inc(\mathcal{T}\cup\mathcal{A}_{\oplus})$

Remarks

- Computing $\Delta_{\pi}^{\mathcal{T}}(E)$ is done in a polynomial time.
- Question:

At the syntactic level

Method

- **Define** : A_{\oplus} = $A_1 \cup A_2 \cup ... \cup A_n$
- Compute $x=Inc(\mathcal{T}\cup\mathcal{A}_{\oplus})$

Remarks

- Computing $\Delta_{\pi}^{\mathcal{T}}(E)$ is done in a polynomial time.
- Question:
 How to extend the possibilistic merging when the uncertainty scales are incommensurable?

Principle

Incommensurable merging

_

Family of compatible and commensurable merging

```
 \begin{array}{lcl} \mathcal{T} & = & \{A \sqsubseteq B, \ B \sqsubseteq \neg C\} \\ \mathcal{A}_1 & = & \{(A(a), .6) \ (C(b), .5)\} \\ \mathcal{A}_2 & = & \{(C(a), .4) \ (B(b), .8), \ (A(b), .7)\}. \end{array}
```

Principle

Incommensurable merging

=

Family of compatible and commensurable merging

$$\begin{array}{lcl} \mathcal{T} & = & \{A \sqsubseteq B, \ B \sqsubseteq \neg C\} \\ \mathcal{A}_1 & = & \{(A(a), .6) \ (C(b), .5)\} \\ \mathcal{A}_2 & = & \{(C(a), .4) \ (B(b), .8), \ (A(b), .7)\}. \end{array}$$

	$\mathcal{R}_1(A_i, f_{ij})$
A_1	.6
	.5
A_2	.4
	.8
	.7

Principle

Incommensurable merging

_

Family of compatible and commensurable merging

$$\mathcal{T} = \{A \sqsubseteq B, B \sqsubseteq \neg C\}
\mathcal{A}_1 = \{(A(a), .6) (C(b), .5)\}
\mathcal{A}_2 = \{(C(a), .4) (B(b), .8), (A(b), .7)\}.$$

	$\mathcal{R}_1(A_i,t_{ij})$
A_1	.6
	.5
A_2	.4
	.8
	.7

	$\mathcal{R}_2(A_i, f_{ij})$
A_1	.5
	.2
A_2	.3
	.7
	.4

Principle

Incommensurable merging

_

Family of compatible and commensurable merging

$$\mathcal{T} = \{A \sqsubseteq B, B \sqsubseteq \neg C\}
\mathcal{A}_1 = \{(A(a), .6) (C(b), .5)\}
\mathcal{A}_2 = \{(C(a), .4) (B(b), .8), (A(b), .7)\}.$$

	$\mathcal{R}_1(A_i,t_{ij})$
A_1	.6
	.5
A_2	.4
	.8
	.7

		$\mathcal{R}_2(A_i, t_{ij})$
_/	41	.5
		.2
/	42	.3
		.7
		.4

	$\mathcal{R}_3(A_i,f_{ij})$
<i>A</i> ₁	.4
	.7
A_2	.3
	.6
	.2

Semantic fusion

• Define a partial pre-order over interprétations

$$\mathcal{I} <^{\mathcal{A}}_{\forall} \mathcal{I}' \iff \forall \mathcal{R} \in \mathcal{R}(\mathcal{A}), \ \mathcal{I} \triangleleft^{\mathcal{A}^{\mathcal{R}}}_{Min} \mathcal{I}'$$

· Select the best ones to define the result of merging

$$\textit{Mod}(\Delta_{\mathcal{T}}^{\forall}(\mathcal{A})) \text{=} \{\mathcal{I} \in \textit{Mod}(\mathcal{T}) \text{:} \ \nexists \ \mathcal{I}' \in \textit{Mod}(\mathcal{T}), \ \mathcal{I}' <_{\forall}^{\mathcal{A}} \ \mathcal{I} \}$$

Semantic fusion

• Define a partial pre-order over interprétations

$$\mathcal{I} <^{\mathcal{A}}_{\forall} \mathcal{I}' \iff \forall \mathcal{R} \in \mathcal{R}(\mathcal{A}), \ \mathcal{I} \triangleleft^{\mathcal{A}^{\mathcal{R}}}_{Min} \mathcal{I}'$$

· Select the best ones to define the result of merging

$$\textit{Mod}(\Delta_{\mathcal{T}}^{\forall}(\mathcal{A})) \text{=} \{\mathcal{I} \in \textit{Mod}(\mathcal{T}) \text{:} \ \nexists \ \mathcal{I}' \in \textit{Mod}(\mathcal{T}), \ \mathcal{I}' <_{\forall}^{\mathcal{A}} \ \mathcal{I} \}$$

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$
- $A_1^{\mathcal{R}_1} = \{ (A(a), .8), (C(b), .4) \}$
- $A_2^{\mathcal{R}_1} = \{(C(a), .2), (B(b), .9), (A(b), .6)\}$

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$
- $A_1^{\mathcal{R}_1} = \{ (A(a), .8), (C(b), .4) \}$
- $A_2^{\mathcal{R}_1} = \{(C(a), .2), (B(b), .9), (A(b), .6)\}$
- $\mathcal{A}_{1}^{\mathcal{R}_{2}} = \{ (A(a), .4), (C(b), .2) \}$
- $\mathcal{A}_2^{\mathcal{R}_2} = \{(C(a), .3), (B(b), .6), (A(b), .5)\}$

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$
- $A_1^{\mathcal{R}_1} = \{ (A(a), .8), (C(b), .4) \}$
- $\mathcal{A}_2^{\mathcal{R}_1} = \{(C(a), .2), (B(b), .9), (A(b), .6)\}$
- $A_1^{\mathcal{R}_2} = \{(A(a), .4), (C(b), .2))\}$
- $A_2^{\mathcal{R}_2} = \{(C(a), .3), (B(b), .6), (A(b), .5)\}$

\mathcal{I}	$ u_{\mathcal{A}^{\mathcal{R}_1}}(\mathcal{I}) $	Min	$ u_{\mathcal{A}^{\mathcal{R}_2}}(\mathcal{I}) $	Min
\mathcal{I}_1	< 1, .1 >	.1	< 1, .4 >	.4
\mathcal{I}_2	< .2, .1 >	.1	< .6, .4 >	.4
\mathcal{I}_3	< .6, .8 >	.6	< .8, .7 >	.7
\mathcal{I}_4	< .2, 1 >	.2	< .6, 1 >	.6

- $A_1 = \{ (A(a), .6), (C(b), .5) \}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$
- $A_1^{\mathcal{R}_1} = \{ (A(a), .8), (C(b), .4) \}$
- $\mathcal{A}_2^{\mathcal{R}_1} = \{(C(a), .2), (B(b), .9), (A(b), .6)\}$
- $A_1^{\mathcal{R}_2} = \{(A(a), .4), (C(b), .2))\}$
- $A_2^{\mathcal{R}_2} = \{(C(a), .3), (B(b), .6), (A(b), .5)\}$

\mathcal{I}	$ u_{\mathcal{A}^{\mathcal{R}_1}}(\mathcal{I}) $	Min	$ u_{\mathcal{A}^{\mathcal{R}_2}}(\mathcal{I}) $	Min
\mathcal{I}_1	< 1, .1 >	.1	< 1, .4 >	.4
\mathcal{I}_2	< .2, .1 >	.1	< .6, .4 >	.4
\mathcal{I}_3	< .6, .8 >	.6	< .8, .7 >	.7
\mathcal{I}_4	< .2, 1 >	.2	< .6, 1 >	.6

Important computational result

 $Mod(\Delta_{\mathcal{T}}^{\forall}(\mathcal{A}))$ can be directly computed from A_i 's in a polynomial time.

Important computational result

 $Mod(\Delta_{\mathcal{T}}^{\forall}(\mathcal{A}))$ can be directly computed from A_i 's in a polynomial time. Thanks to the facts:

- A conflict necessarily implies:
 - One NI axiom.
 - One or two membership assertions.
- A polynomial time algorithm to compute conflicts

Selecting one compatible scale

Normalisation

- $\alpha_{\mathcal{A}_i}$: set of degrees in \mathcal{A}_i
- $\min_{\mathcal{A}_i}$ (resp. $\max_{\mathcal{A}_i}$) is the minimum (maximum) degree used in $\alpha_{\mathcal{A}_i}$

$$N(\alpha_i) = \frac{\alpha_i - (\min_{\mathcal{A}_i} - \epsilon)}{\max_{\mathcal{A}_i} - (\min_{\mathcal{A}_i} - \epsilon)}$$

• $\alpha_i \in \alpha_{\mathcal{A}_i}$ and $0 < \epsilon < \min_{\mathcal{A}_i}$

Normalisation

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

Normalisation

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

$$min_{A_1} = .5$$
, $min_{A_2} = .4$, $max_{A_1} = .6$, $max_{A_2} = .8$ et $\epsilon = .01$

Normalisation

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

$$min_{A_1} = .5$$
, $min_{A_2} = .4$, $max_{A_1} = .6$, $max_{A_2} = .8$ et $\epsilon = .01$

- $A_1 = \{ (A(a), 1), (C(b), .09) \}$
- $A_2 = \{(C(a), 0, 02), (B(b), 1), (A(b), .75)\}$

 Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales
- Merging in DL-lite^π setting is tractable while it is a hard in a (weighted) propositional setting
- Rational postulates for merging in DL-lite^π setting

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales
- Merging in DL-lite^π setting is tractable while it is a hard in a (weighted) propositional setting
- Rational postulates for merging in DL-lite^π setting
 (CSS) ∀B_i ∈ E, if B_i* |= μ, then B_i* ∧ Δ^μ(E) inconsistant

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales
- Merging in DL-lite^π setting is tractable while it is a hard in a (weighted) propositional setting
- Rational postulates for merging in DL-lite^π setting
- (CSS) $\forall B_i \in E$, if $B_i^* \models \mu$, then $B_i^* \wedge \triangle^{\mu}(E)$ inconsistant
 - In the propositional setting, no way to satisfy CCS when only selecting one compatible scale.

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales
- Merging in DL-lite^π setting is tractable while it is a hard in a (weighted) propositional setting
- Rational postulates for merging in DL-lite^π setting
- (CSS) $\forall B_i \in E$, if $B_i^* \models \mu$, then $B_i^* \wedge \triangle^{\mu}(E)$ inconsistant
 - In the propositional setting, no way to satisfy CCS when only selecting one compatible scale.
 - Is-it the case for DL-lite $^{\pi}$ setting.