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e Merging multiple-source uncertain information

e Incommensurability of uncertainty scales

m Assessment marks

» marked on the 0-100 scale
» marked on the 0-20 scale
» Using qualitative scale : A+, A, A-, etc

o Lightweight ontologies (DL-lite)
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Why lightweight DL?

o Each knowledge base format is suitable for some applications

¢ In general, the more expressive is the language the more hard is
its inference relations

¢ Always, one needs to reach for a good compromise between
expressiveness and computational issues.

¢ A reasonable expressive language

o DL-lite logics are appropriate for applications where queries need
to be efficiently handled

¢ Tractable methods for computing conflicts.

3/16



The starting points are Ng, Ng and N, three pairwise disjoint sets :

4/16



The starting points are Ng, Ng and N, three pairwise disjoint sets :
¢ set of atomic concepts,

4/16



The starting points are N¢, Ng and N,, three pairwise disjoint sets :
¢ set of atomic concepts,

¢ set of atomic roles and

4/16



The starting points are N¢, Ng and N,, three pairwise disjoint sets :
¢ set of atomic concepts,

¢ set of atomic roles and

e set of individuals.

4/16



The starting points are Ng, Ng and N, three pairwise disjoint sets :
¢ set of atomic concepts,

¢ set of atomic roles and

e set of individuals.

Let a and b be two individuals. An ABox is a set of:
e Membership assertions on atomic concepts:

A(a)

4/18




The starting points are Ng, Ng and N, three pairwise disjoint sets :
¢ set of atomic concepts,

¢ set of atomic roles and

e set of individuals.

Let a and b be two individuals. An ABox is a set of:
e Membership assertions on atomic concepts:

A(a)

e membership assertions on atomic roles:

P(a, b)
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DL-lite: vocabulary

To define complex concepts and roles:
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DL-lite: vocabulary

To define complex concepts and roles:
e — (negated concepts or roles),

o 7 (set of individuals obtained by projection on the first dimension
of arole)

e ~ (inverse relation)

DL-Litecore TBox consists of a set of concept inclusion assertions:

B C By, By C —By,

with
Bi— A[3P|3P”

5/16



Problem : merging DL-Lite™

e DL-Lite™ : K=T UA = {(¢,a) : ¢ € DL-Lite and « €]0, 1]}

6/16



Problem : merging DL-Lite™

e DL-Lite™ : =T UA={(¢,) : ¢ € DL-Lite and « €]0,1]}
e Input: E = {K4,...,Kn} where K; = T; U A; is a DL-Lite™

6/16



Problem : merging DL-Lite™

e DL-Lite™ : =T UA={(¢,) : ¢ € DL-Lite and « €]0,1]}
e Input: E = {K4,...,Kn} where K; = T; U A; is a DL-Lite™

o Output : weighted DL-lite base A(E) =T U A

6/16



Problem : merging DL-Lite™

DL-Lite™ : K = T UA = {(¢,a) : ¢ € DL-Lite and a €]0, 1]}

Input : E = {K4,...,Kn} where K; = T; U A; is a DL-Lite™

Output : weighted DL-lite base A(E) =T U A

Sources share the same ontology : 71 = ... =T

6/16



Problem : merging DL-Lite™

DL-Lite™ : K = T UA = {(¢,a) : ¢ € DL-Lite and a €]0, 1]}

Input : E = {K4,...,Kn} where K; = T; U A; is a DL-Lite™

Output : weighted DL-lite base A(E) =T U A

Sources share the same ontology : 71 = ... = 7,

T = T; is viewed as a constraint (degree = 1)

6/16



Problem : merging DL-Lite™

DL-Lite™ : K = T UA = {(¢,a) : ¢ € DL-Lite and a €]0, 1]}

Input : E = {K4,...,Kn} where K; = T; U A; is a DL-Lite™

Output : weighted DL-lite base A(E) =T U A

Sources share the same ontology : 71 = ... = 7,

T = T; is viewed as a constraint (degree = 1)

Each 7; U A; is consistent

6/16



Problem : merging DL-Lite™

DL-Lite™ : K = T UA = {(¢,a) : ¢ € DL-Lite and a €]0, 1]}

Input : E = {K4,...,Kn} where K; = T; U A; is a DL-Lite™

Output : weighted DL-lite base A(E) =T U A

Sources share the same ontology : 71 = ... = 7,

T = T; is viewed as a constraint (degree = 1)

Each 7; U A; is consistent

Sources do not share the same uncertainty scale
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Possibilistic fusion with commensurability

o If A UA>U...U A, is consistent with T, then

AT(E)=TUA;UAU...U A,
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Possibilistic fusion with commensurability

If A1 UA>U...U A, is consistent with 7, then

AT(E)=TUAjUAU...UAp

For each source i, rank-order the interpretations Z with respect to
the highest assertion that is rejected from A;.

More precisely:

7i(Z) =1 — max{f: fe AT |~ f}.

Combine 7r,'.s (with the minimum operation) to select the result of
merging.
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Possibilistic merging

« T={AC B, BC ~C}
» A1={(A(a),.6) (C(b), 5)}
o A2={(C(a). .4) (B(b), .8), (A(b),.7)}.

T z vy T AT"(A)
74 A={a}!B={a}’C={b}
Ip | A={}B={},C={ab}
7, [ A={ab],B={ab},C={]
7. | A={b},B={b},C={a}

MNo|n e

= o] M| o[>

ENESIENEN
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Possibilistic merging

« T={AC B, BC ~C}
» A1={(A(a),.6) (C(b), 5)}
o A2={(C(a). .4) (B(b), .8), (A(b),.7)}.

T z vy T AT"(A)
74 A={a}!B={a}’C={b}
Ip | A={}B={},C={ab}
7, [ A={ab],B={ab},C={]
7. | A={b},B={b},C={a}

MNo|n e

= o] M| o[>

ENESIENEN

o [AP"(A)] =I5
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At the syntactic level
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At the syntactic level

B Define: Ag=A1UA2U...U A,
B Compute x=Inc(T U Ag)
B AT(E)=TU{(¢,a): (¢ a)c Aganda > x}

o Computing A7 (E) is done in a polynomial time.

e Question:
How to extend the possibilistic merging when the uncertainty
scales are incommensurable?
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Compatible-based merging

Incommensurable merging

Family of compatible and commensurable merging

T = {ACB, BC-C}
Ay = {(A(a), 6) (C(b),.5)}
Az = {(C(a), 4) (B(b)..8), (A(b),.7)}
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Compatible-based merging

Incommensurable merging

Family of compatible and commensurable merging

7T = {ACB, BC-C}

A = {(A(a),.6) (C(b),.5)}

A2 = {(C(a), 4) (B(b),.8), (A(b),.7)}

R1(Ai, f) Ra(A;, , fi) Rs(Ai, fj)

Ay 6 Aq 5 A4 4

5 2 7
Ao 4 As 3 Az 3

8 7 .6

7 4 2
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Semantic fusion

» Define a partial pre-order over interprétations
I<AT — VYReR(A), I T

o Select the best ones to define the result of merging
Mod(AY-(A))={Z € Mod(T): T’ € Mod(T), T’ <¢* T}
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Exemple

Example (continued)

o A1={(A(a),.6), (C(b), 5)}
o A2={(C(a), 4), (B(b), 8), (A(b), .7)}
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Exemple

Example (continued)
» A1={(A(a), .6), (C(b),.5)}
o Ax={(C(a), 4), (B(b),8), (A(b),.7)}
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Exemple

Example (continued)

o A1={(A(a),.6), (C(b), 5)}
o A2={(C(a), 4), (B(b), 8), (A(b), .7)}

o AT = {(A(a), 8),(C(b), .4))}

o AF' ={(C(a),.2),(B(b)..9). (A(b),.6)}
o AR = {(A(a), .4),(C(b), .2))}

o AZ2 ={(C(a),.3).(B(b). .6). (A(b),.5)}
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Exemple

* A1={(A(a), 6), (C(b), 5)}
* Ao={(C(a), 4), (B(b), 8), (A(b),.7)}
o« AT ={(A(). 8).(C(b), 4))}
o AF'={(C(a), 2).(B(b),-9), (A(b), 6)}
o A2 = {(Aa), 4),(C(b), 2))}
o AJ2 ={(C(a), 3).(B(b), B), (A(b), 5)}

A V ARy (I) Min VAR, (I) Min
| <1,1> 1 <1,4> 4
| <.2,.1> A <.6,4> 4
31 <6,8> 6 [<.8.7> 7
Iy | <.2,1> 2 | <.6,1> 6
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Important computational result

Mod(AY-(A)) can be directly computed from A;’s in a polynomial time.
T
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Important computational result

Mod(AY-(A)) can be directly computed from A/’s in a polynomial time.
Thanks to the facts:

o A conflict necessarily implies:

m One NI axiom.
m One or two membership assertions.

¢ A polynomial time algorithm to compute conflicts
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Selecting one compatible scale

e ay, : set of degrees in A;
e miny, (resp. max_,) is the minimum (maximum) degree used in
a4,

aj — (ming, —€)
maxy, — (miny, — €)

N(oj) =

° aj € ay and 0 < e < ming,
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Normalisation

o A1={(A(a), .6), (C(b),.5)}
o A>={(C(a), 4), (B(b),.8),(A(b),.7)}
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Normalisation

o A1={(A(a), 6), (C(b),.5)}
o A>={(C(a), 4), (B(b),.8),(A(b),.7)}

miny, = .5, ming, = .4, maxy, = .6, maxs, = .8 ete = .01

o A1={(A(a), 1), (C(b),.09)}
o A2={(C(a),0,02), (B(b), 1), (A(b),.75)}
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o Safe possibilistic DL-Lite KB Merging without commensurability
assumption using compatible scales

e Merging in DL-lite™ setting is tractable while it is a hard in a
(weighted) propositional setting

o Rational postulates for merging in DL-lite™ setting

(CSS) VB, € E, if Bf = 1, then Bf A A*(E) inconsistant
m In the propositional setting, no way to satisfy CCS when only
selecting one compatible scale.
m Is-it the case for DL-lite™ setting.
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