
Merging Incommensurable Possibilistic DL-Lite
Assertional Bases

S. Benferhat1 Z. Bouraoui1 S. Lagrue1 J. Rossit2

1 CRIL-CNRS, Univ. d’Artois, {benferhat,bouraoui,lagrue}@cril.fr,

2 LIPADE, Univ Paris Descartes, julien.rossit@parisdescartes.fr

1 / 16

Motivations

3 main notions
• Merging multiple-source uncertain information

• Incommensurability of uncertainty scales
Assessment marks

I marked on the 0-100 scale
I marked on the 0-20 scale
I Using qualitative scale : A+, A, A-, etc

• Lightweight ontologies (DL-lite)

2 / 16

Why lightweight DL?

Which language to use?
• Each knowledge base format is suitable for some applications

• In general, the more expressive is the language the more hard is
its inference relations

• Always, one needs to reach for a good compromise between
expressiveness and computational issues.

Nice features of DL-Lite
• A reasonable expressive language

• DL-lite logics are appropriate for applications where queries need
to be efficiently handled

• Tractable methods for computing conflicts.

3 / 16

Why lightweight DL?

Which language to use?
• Each knowledge base format is suitable for some applications

• In general, the more expressive is the language the more hard is
its inference relations

• Always, one needs to reach for a good compromise between
expressiveness and computational issues.

Nice features of DL-Lite
• A reasonable expressive language

• DL-lite logics are appropriate for applications where queries need
to be efficiently handled

• Tractable methods for computing conflicts.

3 / 16

Why lightweight DL?

Which language to use?
• Each knowledge base format is suitable for some applications

• In general, the more expressive is the language the more hard is
its inference relations

• Always, one needs to reach for a good compromise between
expressiveness and computational issues.

Nice features of DL-Lite
• A reasonable expressive language

• DL-lite logics are appropriate for applications where queries need
to be efficiently handled

• Tractable methods for computing conflicts.

3 / 16

Why lightweight DL?

Which language to use?
• Each knowledge base format is suitable for some applications

• In general, the more expressive is the language the more hard is
its inference relations

• Always, one needs to reach for a good compromise between
expressiveness and computational issues.

Nice features of DL-Lite
• A reasonable expressive language

• DL-lite logics are appropriate for applications where queries need
to be efficiently handled

• Tractable methods for computing conflicts.

3 / 16

Why lightweight DL?

Which language to use?
• Each knowledge base format is suitable for some applications

• In general, the more expressive is the language the more hard is
its inference relations

• Always, one needs to reach for a good compromise between
expressiveness and computational issues.

Nice features of DL-Lite
• A reasonable expressive language

• DL-lite logics are appropriate for applications where queries need
to be efficiently handled

• Tractable methods for computing conflicts.

3 / 16

Why lightweight DL?

Which language to use?
• Each knowledge base format is suitable for some applications

• In general, the more expressive is the language the more hard is
its inference relations

• Always, one needs to reach for a good compromise between
expressiveness and computational issues.

Nice features of DL-Lite
• A reasonable expressive language

• DL-lite logics are appropriate for applications where queries need
to be efficiently handled

• Tractable methods for computing conflicts.

3 / 16

DL-lite

DL-lite: vocabulary
The starting points are NC , NR and NI , three pairwise disjoint sets :

• set of atomic concepts,

• set of atomic roles and

• set of individuals.

ABOX
Let a and b be two individuals. An ABox is a set of:

• Membership assertions on atomic concepts:

A (a)

• membership assertions on atomic roles:

P (a,b)

4 / 16

DL-lite

DL-lite: vocabulary
The starting points are NC , NR and NI , three pairwise disjoint sets :

• set of atomic concepts,

• set of atomic roles and

• set of individuals.

ABOX
Let a and b be two individuals. An ABox is a set of:

• Membership assertions on atomic concepts:

A (a)

• membership assertions on atomic roles:

P (a,b)

4 / 16

DL-lite

DL-lite: vocabulary
The starting points are NC , NR and NI , three pairwise disjoint sets :

• set of atomic concepts,

• set of atomic roles and

• set of individuals.

ABOX
Let a and b be two individuals. An ABox is a set of:

• Membership assertions on atomic concepts:

A (a)

• membership assertions on atomic roles:

P (a,b)

4 / 16

DL-lite

DL-lite: vocabulary
The starting points are NC , NR and NI , three pairwise disjoint sets :

• set of atomic concepts,

• set of atomic roles and

• set of individuals.

ABOX
Let a and b be two individuals. An ABox is a set of:

• Membership assertions on atomic concepts:

A (a)

• membership assertions on atomic roles:

P (a,b)

4 / 16

DL-lite

DL-lite: vocabulary
The starting points are NC , NR and NI , three pairwise disjoint sets :

• set of atomic concepts,

• set of atomic roles and

• set of individuals.

ABOX
Let a and b be two individuals. An ABox is a set of:

• Membership assertions on atomic concepts:

A (a)

• membership assertions on atomic roles:

P (a,b)

4 / 16

DL-lite

DL-lite: vocabulary
The starting points are NC , NR and NI , three pairwise disjoint sets :

• set of atomic concepts,

• set of atomic roles and

• set of individuals.

ABOX
Let a and b be two individuals. An ABox is a set of:

• Membership assertions on atomic concepts:

A (a)

• membership assertions on atomic roles:

P (a,b)
4 / 16

DL-lite: vocabulary

DL-lite: unary connectors
To define complex concepts and roles:

• ¬ (negated concepts or roles),
• ∃ (set of individuals obtained by projection on the first dimension

of a role)
• − (inverse relation)

TBOX of DL-litecore

DL-Litecore TBox consists of a set of concept inclusion assertions:

B1 v B2, B1 v ¬B2,

with
Bi −→ A| ∃P | ∃P−

5 / 16

DL-lite: vocabulary

DL-lite: unary connectors
To define complex concepts and roles:
• ¬ (negated concepts or roles),

• ∃ (set of individuals obtained by projection on the first dimension
of a role)

• − (inverse relation)

TBOX of DL-litecore

DL-Litecore TBox consists of a set of concept inclusion assertions:

B1 v B2, B1 v ¬B2,

with
Bi −→ A| ∃P | ∃P−

5 / 16

DL-lite: vocabulary

DL-lite: unary connectors
To define complex concepts and roles:
• ¬ (negated concepts or roles),
• ∃ (set of individuals obtained by projection on the first dimension

of a role)

• − (inverse relation)

TBOX of DL-litecore

DL-Litecore TBox consists of a set of concept inclusion assertions:

B1 v B2, B1 v ¬B2,

with
Bi −→ A| ∃P | ∃P−

5 / 16

DL-lite: vocabulary

DL-lite: unary connectors
To define complex concepts and roles:
• ¬ (negated concepts or roles),
• ∃ (set of individuals obtained by projection on the first dimension

of a role)
• − (inverse relation)

TBOX of DL-litecore

DL-Litecore TBox consists of a set of concept inclusion assertions:

B1 v B2, B1 v ¬B2,

with
Bi −→ A| ∃P | ∃P−

5 / 16

DL-lite: vocabulary

DL-lite: unary connectors
To define complex concepts and roles:
• ¬ (negated concepts or roles),
• ∃ (set of individuals obtained by projection on the first dimension

of a role)
• − (inverse relation)

TBOX of DL-litecore

DL-Litecore TBox consists of a set of concept inclusion assertions:

B1 v B2, B1 v ¬B2,

with

Bi −→ A| ∃P | ∃P−

5 / 16

DL-lite: vocabulary

DL-lite: unary connectors
To define complex concepts and roles:
• ¬ (negated concepts or roles),
• ∃ (set of individuals obtained by projection on the first dimension

of a role)
• − (inverse relation)

TBOX of DL-litecore

DL-Litecore TBox consists of a set of concept inclusion assertions:

B1 v B2, B1 v ¬B2,

with
Bi −→ A| ∃P | ∃P−

5 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Problem : merging DL-Liteπ

Contexte
• DL-Liteπ : K = T ∪ A = {(φ, α) : φ ∈ DL-Lite and α ∈]0,1]}

• Input : E = {K1, ...,Kn} where Ki = Ti ∪ Ai is a DL-Liteπ

• Output : weighted DL-lite base ∆(E) = T ∪ A

Assumptions
• Sources share the same ontology : T1 = ... = Tn

• T = Ti is viewed as a constraint (degree = 1)

• Each Ti ∪ Ai is consistent

• Sources do not share the same uncertainty scale

6 / 16

Possibilistic fusion with commensurability

Principle
• If A1 ∪ A2 ∪ . . . ∪ An is consistent with T , then

∆Tπ (E) = T ∪ A1 ∪ A2 ∪ . . . ∪ An

• For each source i , rank-order the interpretations I with respect to
the highest assertion that is rejected from Ai .

• More precisely:

πi(I) = 1−max{f : f ∈ Ai , I 6|= f}.

• Combine π
′

i s (with the minimum operation) to select the result of
merging.

7 / 16

Possibilistic fusion with commensurability

Principle
• If A1 ∪ A2 ∪ . . . ∪ An is consistent with T , then

∆Tπ (E) = T ∪ A1 ∪ A2 ∪ . . . ∪ An

• For each source i , rank-order the interpretations I with respect to
the highest assertion that is rejected from Ai .

• More precisely:

πi(I) = 1−max{f : f ∈ Ai , I 6|= f}.

• Combine π
′

i s (with the minimum operation) to select the result of
merging.

7 / 16

Possibilistic fusion with commensurability

Principle
• If A1 ∪ A2 ∪ . . . ∪ An is consistent with T , then

∆Tπ (E) = T ∪ A1 ∪ A2 ∪ . . . ∪ An

• For each source i , rank-order the interpretations I with respect to
the highest assertion that is rejected from Ai .

• More precisely:

πi(I) = 1−max{f : f ∈ Ai , I 6|= f}.

• Combine π
′

i s (with the minimum operation) to select the result of
merging.

7 / 16

Possibilistic fusion with commensurability

Principle
• If A1 ∪ A2 ∪ . . . ∪ An is consistent with T , then

∆Tπ (E) = T ∪ A1 ∪ A2 ∪ . . . ∪ An

• For each source i , rank-order the interpretations I with respect to
the highest assertion that is rejected from Ai .

• More precisely:

πi(I) = 1−max{f : f ∈ Ai , I 6|= f}.

• Combine π
′

i s (with the minimum operation) to select the result of
merging.

7 / 16

Possibilistic merging

Example
• T ={A v B, B v ¬C}
• A1={(A(a), .6) (C(b), .5)}
• A2={(C(a), .4) (B(b), .8), (A(b), .7)}.

I .I πA1 πA2 ∆min
T (A)

I1 A={a},B={a},C={b} 1 .2 .2
I2 A={},B={},C={a,b} .4 .2 .4
I3 A={a,b},B={a,b},C={} .5 .6 .5
I4 A={b},B={b},C={a} .4 1 .4

• [∆min
T (A)] = I3

8 / 16

Possibilistic merging

Example
• T ={A v B, B v ¬C}
• A1={(A(a), .6) (C(b), .5)}
• A2={(C(a), .4) (B(b), .8), (A(b), .7)}.

I .I πA1 πA2 ∆min
T (A)

I1 A={a},B={a},C={b} 1 .2 .2
I2 A={},B={},C={a,b} .4 .2 .4
I3 A={a,b},B={a,b},C={} .5 .6 .5
I4 A={b},B={b},C={a} .4 1 .4

• [∆min
T (A)] = I3

8 / 16

At the syntactic level

Method
1 Define : A⊕=A1 ∪ A2 ∪ . . . ∪ An

2 Compute x=Inc(T ∪ A⊕)

3 ∆Tπ (E)=T ∪ {(φ, α) : (φ, α) ∈ A⊕ and α > x}

Remarks
• Computing ∆Tπ (E) is done in a polynomial time.

• Question:
How to extend the possibilistic merging when the uncertainty
scales are incommensurable?

9 / 16

At the syntactic level

Method
1 Define : A⊕=A1 ∪ A2 ∪ . . . ∪ An

2 Compute x=Inc(T ∪ A⊕)

3 ∆Tπ (E)=T ∪ {(φ, α) : (φ, α) ∈ A⊕ and α > x}

Remarks
• Computing ∆Tπ (E) is done in a polynomial time.

• Question:
How to extend the possibilistic merging when the uncertainty
scales are incommensurable?

9 / 16

At the syntactic level

Method
1 Define : A⊕=A1 ∪ A2 ∪ . . . ∪ An

2 Compute x=Inc(T ∪ A⊕)

3 ∆Tπ (E)=T ∪ {(φ, α) : (φ, α) ∈ A⊕ and α > x}

Remarks
• Computing ∆Tπ (E) is done in a polynomial time.

• Question:
How to extend the possibilistic merging when the uncertainty
scales are incommensurable?

9 / 16

At the syntactic level

Method
1 Define : A⊕=A1 ∪ A2 ∪ . . . ∪ An

2 Compute x=Inc(T ∪ A⊕)

3 ∆Tπ (E)=T ∪ {(φ, α) : (φ, α) ∈ A⊕ and α > x}

Remarks
• Computing ∆Tπ (E) is done in a polynomial time.

• Question:
How to extend the possibilistic merging when the uncertainty
scales are incommensurable?

9 / 16

At the syntactic level

Method
1 Define : A⊕=A1 ∪ A2 ∪ . . . ∪ An

2 Compute x=Inc(T ∪ A⊕)

3 ∆Tπ (E)=T ∪ {(φ, α) : (φ, α) ∈ A⊕ and α > x}

Remarks
• Computing ∆Tπ (E) is done in a polynomial time.

• Question:

How to extend the possibilistic merging when the uncertainty
scales are incommensurable?

9 / 16

At the syntactic level

Method
1 Define : A⊕=A1 ∪ A2 ∪ . . . ∪ An

2 Compute x=Inc(T ∪ A⊕)

3 ∆Tπ (E)=T ∪ {(φ, α) : (φ, α) ∈ A⊕ and α > x}

Remarks
• Computing ∆Tπ (E) is done in a polynomial time.

• Question:
How to extend the possibilistic merging when the uncertainty
scales are incommensurable?

9 / 16

Compatible-based merging

Principle
Incommensurable merging

=
Family of compatible and commensurable merging

Example
T = {A v B, B v ¬C}
A1 = {(A(a), .6) (C(b), .5)}
A2 = {(C(a), .4) (B(b), .8), (A(b), .7)}.

R1(Ai , fij)
A1 .6

.5
A2 .4

.8

.7

R2(Ai , , fij)
A1 .5

.2
A2 .3

.7

.4

R3(Ai , fij)
A1 .4

.7
A2 .3

.6

.2

10 / 16

Compatible-based merging

Principle
Incommensurable merging

=
Family of compatible and commensurable merging

Example
T = {A v B, B v ¬C}
A1 = {(A(a), .6) (C(b), .5)}
A2 = {(C(a), .4) (B(b), .8), (A(b), .7)}.

R1(Ai , fij)
A1 .6

.5
A2 .4

.8

.7

R2(Ai , , fij)
A1 .5

.2
A2 .3

.7

.4

R3(Ai , fij)
A1 .4

.7
A2 .3

.6

.2

10 / 16

Compatible-based merging

Principle
Incommensurable merging

=
Family of compatible and commensurable merging

Example
T = {A v B, B v ¬C}
A1 = {(A(a), .6) (C(b), .5)}
A2 = {(C(a), .4) (B(b), .8), (A(b), .7)}.

R1(Ai , fij)
A1 .6

.5
A2 .4

.8

.7

R2(Ai , , fij)
A1 .5

.2
A2 .3

.7

.4

R3(Ai , fij)
A1 .4

.7
A2 .3

.6

.2

10 / 16

Compatible-based merging

Principle
Incommensurable merging

=
Family of compatible and commensurable merging

Example
T = {A v B, B v ¬C}
A1 = {(A(a), .6) (C(b), .5)}
A2 = {(C(a), .4) (B(b), .8), (A(b), .7)}.

R1(Ai , fij)
A1 .6

.5
A2 .4

.8

.7

R2(Ai , , fij)
A1 .5

.2
A2 .3

.7

.4

R3(Ai , fij)
A1 .4

.7
A2 .3

.6

.2

10 / 16

Semantic fusion

• Define a partial pre-order over interprétations

I <A∀ I ′ ⇐⇒ ∀R ∈ R(A), I /AR

Min I
′

• Select the best ones to define the result of merging

Mod(∆∀T (A))={I ∈ Mod(T): @ I ′ ∈ Mod(T), I ′ <A∀ I}

11 / 16

Semantic fusion

• Define a partial pre-order over interprétations

I <A∀ I ′ ⇐⇒ ∀R ∈ R(A), I /AR

Min I
′

• Select the best ones to define the result of merging

Mod(∆∀T (A))={I ∈ Mod(T): @ I ′ ∈ Mod(T), I ′ <A∀ I}

11 / 16

Exemple

Example (continued)

• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

• AR1
1 = {(A(a), .8), (C(b), .4))}

• AR1
2 = {(C(a), .2), (B(b), .9), (A(b), .6)}

• AR2
1 = {(A(a), .4), (C(b), .2))}

• AR2
2 = {(C(a), .3), (B(b), .6), (A(b), .5)}

I νAR1 (I) Min νAR2 (I) Min
I1 < 1, .1 > .1 < 1, .4 > .4
I2 < .2, .1 > .1 < .6, .4 > .4
I3 < .6, .8 > .6 < .8, .7 > .7
I4 < .2,1 > .2 < .6,1 > .6

• In R1 and R2, I3 is preferred
• I3 : A = {a,b},B = {a,b},C = {}

12 / 16

Exemple

Example (continued)

• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

• AR1
1 = {(A(a), .8), (C(b), .4))}

• AR1
2 = {(C(a), .2), (B(b), .9), (A(b), .6)}

• AR2
1 = {(A(a), .4), (C(b), .2))}

• AR2
2 = {(C(a), .3), (B(b), .6), (A(b), .5)}

I νAR1 (I) Min νAR2 (I) Min
I1 < 1, .1 > .1 < 1, .4 > .4
I2 < .2, .1 > .1 < .6, .4 > .4
I3 < .6, .8 > .6 < .8, .7 > .7
I4 < .2,1 > .2 < .6,1 > .6

• In R1 and R2, I3 is preferred
• I3 : A = {a,b},B = {a,b},C = {}

12 / 16

Exemple

Example (continued)

• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

• AR1
1 = {(A(a), .8), (C(b), .4))}

• AR1
2 = {(C(a), .2), (B(b), .9), (A(b), .6)}

• AR2
1 = {(A(a), .4), (C(b), .2))}

• AR2
2 = {(C(a), .3), (B(b), .6), (A(b), .5)}

I νAR1 (I) Min νAR2 (I) Min
I1 < 1, .1 > .1 < 1, .4 > .4
I2 < .2, .1 > .1 < .6, .4 > .4
I3 < .6, .8 > .6 < .8, .7 > .7
I4 < .2,1 > .2 < .6,1 > .6

• In R1 and R2, I3 is preferred
• I3 : A = {a,b},B = {a,b},C = {}

12 / 16

Exemple

Example (continued)

• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

• AR1
1 = {(A(a), .8), (C(b), .4))}

• AR1
2 = {(C(a), .2), (B(b), .9), (A(b), .6)}

• AR2
1 = {(A(a), .4), (C(b), .2))}

• AR2
2 = {(C(a), .3), (B(b), .6), (A(b), .5)}

I νAR1 (I) Min νAR2 (I) Min
I1 < 1, .1 > .1 < 1, .4 > .4
I2 < .2, .1 > .1 < .6, .4 > .4
I3 < .6, .8 > .6 < .8, .7 > .7
I4 < .2,1 > .2 < .6,1 > .6

• In R1 and R2, I3 is preferred
• I3 : A = {a,b},B = {a,b},C = {}

12 / 16

Exemple

Example (continued)

• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

• AR1
1 = {(A(a), .8), (C(b), .4))}

• AR1
2 = {(C(a), .2), (B(b), .9), (A(b), .6)}

• AR2
1 = {(A(a), .4), (C(b), .2))}

• AR2
2 = {(C(a), .3), (B(b), .6), (A(b), .5)}

I νAR1 (I) Min νAR2 (I) Min
I1 < 1, .1 > .1 < 1, .4 > .4
I2 < .2, .1 > .1 < .6, .4 > .4
I3 < .6, .8 > .6 < .8, .7 > .7
I4 < .2,1 > .2 < .6,1 > .6

• In R1 and R2, I3 is preferred
• I3 : A = {a,b},B = {a,b},C = {}

12 / 16

Important computational result

Mod(∆∀T (A)) can be directly computed from Ai ’s in a polynomial time.

Thanks to the facts:

• A conflict necessarily implies:
One NI axiom.
One or two membership assertions.

• A polynomial time algorithm to compute conflicts

13 / 16

Important computational result

Mod(∆∀T (A)) can be directly computed from Ai ’s in a polynomial time.
Thanks to the facts:

• A conflict necessarily implies:
One NI axiom.
One or two membership assertions.

• A polynomial time algorithm to compute conflicts

13 / 16

Selecting one compatible scale

Normalisation
• αAi : set of degrees in Ai

• minAi (resp. maxAi) is the minimum (maximum) degree used in
αAi

N(αi) =
αi − (minAi − ε)

maxAi − (minAi − ε)

• αi ∈ αAi and 0 < ε < minAi

14 / 16

Normalisation

Example
• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

minA1 = .5, minA2 = .4, maxA1 = .6, maxA2 = .8 et ε = .01

• A1={(A(a),1), (C(b), .09)}
• A2={(C(a),0,02), (B(b),1), (A(b), .75)}

15 / 16

Normalisation

Example
• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

minA1 = .5, minA2 = .4, maxA1 = .6, maxA2 = .8 et ε = .01

• A1={(A(a),1), (C(b), .09)}
• A2={(C(a),0,02), (B(b),1), (A(b), .75)}

15 / 16

Normalisation

Example
• A1={(A(a), .6), (C(b), .5)}
• A2={(C(a), .4), (B(b), .8), (A(b), .7)}

minA1 = .5, minA2 = .4, maxA1 = .6, maxA2 = .8 et ε = .01

• A1={(A(a),1), (C(b), .09)}
• A2={(C(a),0,02), (B(b),1), (A(b), .75)}

15 / 16

Conclusions

• Safe possibilistic DL-Lite KB Merging without commensurability
assumption using compatible scales

• Merging in DL-liteπ setting is tractable while it is a hard in a
(weighted) propositional setting

• Rational postulates for merging in DL-liteπ setting
(CSS) ∀Bi ∈ E , if B∗

i |= µ, then B∗
i ∧4µ(E) inconsistant

In the propositional setting, no way to satisfy CCS when only
selecting one compatible scale.
Is-it the case for DL-liteπ setting.

16 / 16

Conclusions

• Safe possibilistic DL-Lite KB Merging without commensurability
assumption using compatible scales

• Merging in DL-liteπ setting is tractable while it is a hard in a
(weighted) propositional setting

• Rational postulates for merging in DL-liteπ setting

(CSS) ∀Bi ∈ E , if B∗
i |= µ, then B∗

i ∧4µ(E) inconsistant
In the propositional setting, no way to satisfy CCS when only
selecting one compatible scale.
Is-it the case for DL-liteπ setting.

16 / 16

Conclusions

• Safe possibilistic DL-Lite KB Merging without commensurability
assumption using compatible scales

• Merging in DL-liteπ setting is tractable while it is a hard in a
(weighted) propositional setting

• Rational postulates for merging in DL-liteπ setting
(CSS) ∀Bi ∈ E , if B∗

i |= µ, then B∗
i ∧4µ(E) inconsistant

In the propositional setting, no way to satisfy CCS when only
selecting one compatible scale.
Is-it the case for DL-liteπ setting.

16 / 16

Conclusions

• Safe possibilistic DL-Lite KB Merging without commensurability
assumption using compatible scales

• Merging in DL-liteπ setting is tractable while it is a hard in a
(weighted) propositional setting

• Rational postulates for merging in DL-liteπ setting
(CSS) ∀Bi ∈ E , if B∗

i |= µ, then B∗
i ∧4µ(E) inconsistant

In the propositional setting, no way to satisfy CCS when only
selecting one compatible scale.

Is-it the case for DL-liteπ setting.

16 / 16

Conclusions

• Safe possibilistic DL-Lite KB Merging without commensurability
assumption using compatible scales

• Merging in DL-liteπ setting is tractable while it is a hard in a
(weighted) propositional setting

• Rational postulates for merging in DL-liteπ setting
(CSS) ∀Bi ∈ E , if B∗

i |= µ, then B∗
i ∧4µ(E) inconsistant

In the propositional setting, no way to satisfy CCS when only
selecting one compatible scale.
Is-it the case for DL-liteπ setting.

16 / 16

	Selecting one compatible scale

