Merging Incommensurable Possibilistic DL-Lite Assertional Bases

S. Benferhat1 Z. Bouraoui1 S. Lagrue1 J. Rossit2

1 CRIL-CNRS, Univ. d’Artois, \{benferhat,bouraoui,lagrue\}@cril.fr,

2 LIPADE, Univ Paris Descartes, julien.rossit@parisdescartes.fr
Motivations

3 main notions

- Merging multiple-source uncertain information

- Incommensurability of uncertainty scales
 - Assessment marks
 - marked on the 0-100 scale
 - marked on the 0-20 scale
 - Using qualitative scale : A+, A, A-, etc

- Lightweight ontologies (DL-lite)
Why lightweight DL?

Which language to use?

- Each knowledge base format is suitable for some applications
Why lightweight DL?

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations
Why lightweight DL?

Which language to use?

- Each knowledge base format is suitable for some applications.
- In general, the more expressive is the language the more hard is its inference relations.
- Always, one needs to reach for a good compromise between expressiveness and computational issues.
Why lightweight DL?

Which language to use?

- Each knowledge base format is suitable for some applications
- In general, the more expressive is the language the more hard is its inference relations
- Always, one needs to reach for a good compromise between expressiveness and computational issues.

Nice features of DL-Lite

- A reasonable expressive language
Why lightweight DL?

<table>
<thead>
<tr>
<th>Which language to use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Each knowledge base format is suitable for some applications</td>
</tr>
<tr>
<td>• In general, the more expressive is the language the more hard is its inference relations</td>
</tr>
<tr>
<td>• Always, one needs to reach for a good compromise between expressiveness and computational issues.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nice features of DL-Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A reasonable expressive language</td>
</tr>
<tr>
<td>• DL-lite logics are appropriate for applications where queries need to be efficiently handled</td>
</tr>
</tbody>
</table>
Why lightweight DL?

Which language to use?
- Each knowledge base format is suitable for some applications.
- In general, the more expressive is the language the more hard is its inference relations.
- Always, one needs to reach for a good compromise between expressiveness and computational issues.

Nice features of DL-Lite
- A reasonable expressive language
- DL-lite logics are appropriate for applications where queries need to be efficiently handled
- Tractable methods for computing conflicts.
The starting points are N_C, N_R and N_I, three pairwise disjoint sets:
The starting points are N_C, N_R and N_I, three pairwise disjoint sets:

- set of atomic concepts,
The starting points are N_C, N_R and N_I, three pairwise disjoint sets:

- set of atomic concepts,
- set of atomic roles and
The starting points are N_C, N_R and N_I, three pairwise disjoint sets:

- set of atomic concepts,
- set of atomic roles and
- set of individuals.
The starting points are N_C, N_R and N_I, three pairwise disjoint sets:
- set of atomic concepts,
- set of atomic roles and
- set of individuals.

Let a and b be two individuals. An ABox is a set of:
- Membership assertions on atomic concepts:
 \[A(a) \]
The starting points are N_C, N_R and N_I, three pairwise disjoint sets:

- set of atomic concepts,
- set of atomic roles and
- set of individuals.

Let a and b be two individuals. An ABox is a set of:

- Membership assertions on atomic concepts:
 \[A(a) \]
- membership assertions on atomic roles:
 \[P(a, b) \]
To define complex concepts and roles:

- ¬ (negated concepts or roles)
- ∃ (set of individuals obtained by projection on the first dimension of a role)
- (inverse relation)
To define complex concepts and roles:

- ¬ (negated concepts or roles),
To define complex concepts and roles:

- ¬ (negated concepts or roles),
- ∃ (set of individuals obtained by projection on the first dimension of a role)
To define complex concepts and roles:

- ¬ (negated concepts or roles),
- ∃ (set of individuals obtained by projection on the first dimension of a role)
- − (inverse relation)
DL-lite: vocabulary

DL-lite: unary connectors

To define complex concepts and roles:
- \(\neg \) (negated concepts or roles),
- \(\exists \) (set of individuals obtained by projection on the first dimension of a role)
- \(\neg \) (inverse relation)

TBOX of DL-lite\(_{\text{core}}\)

DL-Lite\(_{\text{core}}\) TBox consists of a set of concept inclusion assertions:

\[
B_1 \sqsubseteq B_2, \quad B_1 \sqsubseteq \neg B_2,
\]

with
DL-lite: vocabulary

DL-lite: unary connectors

To define complex concepts and roles:

- \(\neg \) (negated concepts or roles),
- \(\exists \) (set of individuals obtained by projection on the first dimension of a role)
- \(\sim \) (inverse relation)

TBox of DL-lite_{core}

DL-Lite_{core} TBox consists of a set of concept inclusion assertions:

\[
B_1 \sqsubseteq B_2, \quad B_1 \sqsubseteq \neg B_2,
\]

with

\[
B_i \rightarrow A \mid \exists P \mid \exists P
\]
Problem: merging DL-Lite$^\pi$

Contexte

- **DL-Lite$^\pi$:** $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{ (\phi, \alpha) : \phi \in \text{DL-Lite} \text{ and } \alpha \in]0, 1] \}$

Assumptions

- Sources share the same ontology: $\mathcal{T}_1 = \ldots = \mathcal{T}_n$
- \mathcal{T}_i is viewed as a constraint (degree = 1)
- Each $\mathcal{T}_i \cup \mathcal{A}_i$ is consistent
- Sources do not share the same uncertainty scale
Problem: merging DL-Lite^π

Contexte

- $\text{DL-Lite}^\pi : \mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \text{DL-Lite} \text{ and } \alpha \in]0, 1]\}$
- Input: $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite^π

Assumptions

- Sources share the same ontology: $\mathcal{T}_1 = ... = \mathcal{T}_n$
- \mathcal{T}_i is viewed as a constraint (degree = 1)
- Each $\mathcal{T}_i \cup \mathcal{A}_i$ is consistent
- Sources do not share the same uncertainty scale
Problem : merging DL-Lite$^\pi$

Contexte

- **DL-Lite$^\pi$** : $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{ (\phi, \alpha) : \phi \in \text{DL-Lite} \text{ and } \alpha \in]0, 1]\}$
- **Input** : $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite$^\pi$
- **Output** : weighted DL-lite base $\Delta(E) = \mathcal{T} \cup \mathcal{A}$

Assumptions

- Sources share the same ontology : $\mathcal{T}_1 = ... = \mathcal{T}_n$
- \mathcal{T}_i is viewed as a constraint (degree = 1)
- Each $\mathcal{T}_i \cup \mathcal{A}_i$ is consistent
- Sources do not share the same uncertainty scale
Problem : merging DL-Lite

Contexe
- **DL-Lite**
 \[\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \text{DL-Lite and } \alpha \in]0, 1]\}
- **Input** : \(E = \{\mathcal{K}_1, ..., \mathcal{K}_n\} \) where \(\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i \) is a DL-Lite
- **Output** : weighted DL-lite base \(\Delta(E) = \mathcal{T} \cup \mathcal{A} \)

Assumptions
- Sources share the same ontology : \(\mathcal{T}_1 = ... = \mathcal{T}_n \)
Contexte

- DL-Lite$^\pi$: $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{ (\phi, \alpha) : \phi \in \text{DL-Lite} \text{ and } \alpha \in]0, 1]\} $
- Input: $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite$^\pi$
- Output: weighted DL-lite base $\Delta(E) = \mathcal{T} \cup \mathcal{A}$

Assumptions

- Sources share the same ontology: $\mathcal{T}_1 = ... = \mathcal{T}_n$
- $\mathcal{T} = \mathcal{T}_i$ is viewed as a constraint (degree = 1)
Problem: merging DL-Lite\(^\pi\)

Contexte

- DL-Lite\(^\pi\): \(\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \text{DL-Lite} \text{ and } \alpha \in [0, 1]\}\)
- Input: \(E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}\) where \(\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i\) is a DL-Lite\(^\pi\)
- Output: weighted DL-lite base \(\Delta(E) = \mathcal{T} \cup \mathcal{A}\)

Assumptions

- Sources share the same ontology: \(\mathcal{T}_1 = ... = \mathcal{T}_n\)
- \(\mathcal{T} = \mathcal{T}_i\) is viewed as a constraint (degree = 1)
- Each \(\mathcal{T}_i \cup \mathcal{A}_i\) is consistent
Problem: merging DL-Lite$^\pi$

Contexte

- DL-Lite$^\pi$: $\mathcal{K} = \mathcal{T} \cup \mathcal{A} = \{(\phi, \alpha) : \phi \in \text{DL-Lite} \text{ and } \alpha \in]0, 1]\}$
- Input: $E = \{\mathcal{K}_1, ..., \mathcal{K}_n\}$ where $\mathcal{K}_i = \mathcal{T}_i \cup \mathcal{A}_i$ is a DL-Lite$^\pi$
- Output: weighted DL-lite base $\Delta(E) = \mathcal{T} \cup \mathcal{A}$

Assumptions

- Sources share the same ontology: $\mathcal{T}_1 = ... = \mathcal{T}_n$
- $\mathcal{T} = \mathcal{T}_i$ is viewed as a constraint (degree = 1)
- Each $\mathcal{T}_i \cup \mathcal{A}_i$ is consistent
- Sources do not share the same uncertainty scale
Principle

- If $\mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$ is consistent with \mathcal{T}, then

$$\Delta_{\pi}^{\mathcal{T}}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$$
Possibilistic fusion with commensurability

Principle

- If $A_1 \cup A_2 \cup \ldots \cup A_n$ is consistent with \mathcal{T}, then
 \[
 \Delta^\mathcal{T}_{\pi}(E) = \mathcal{T} \cup A_1 \cup A_2 \cup \ldots \cup A_n
 \]

- For each source i, rank-order the interpretations \mathcal{I} with respect to the highest assertion that is rejected from A_i.
Possibilistic fusion with commensurability

Principle

- If $\mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$ is consistent with \mathcal{T}, then

 $$\Delta^{\mathcal{T}}_{\pi}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$$

- For each source i, rank-order the interpretations \mathcal{I} with respect to the highest assertion that is rejected from \mathcal{A}_i.

- More precisely:

 $$\pi_i(\mathcal{I}) = 1 - \max\{f : f \in \mathcal{A}_i, \mathcal{I} \not\models f\}.$$
Possibilistic fusion with commensurability

Principle

- If $\mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$ is consistent with \mathcal{T}, then

 \[
 \Delta_{\pi}^{\mathcal{T}}(E) = \mathcal{T} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n
 \]

- For each source i, rank-order the interpretations \mathcal{I} with respect to the highest assertion that is rejected from \mathcal{A}_i.

- More precisely:

 \[
 \pi_i(\mathcal{I}) = 1 - \max\{f : f \in \mathcal{A}_i, \mathcal{I} \nmid f\}.
 \]

- Combine π_i's (with the minimum operation) to select the result of merging.
Possibilistic merging

Example

- $\mathcal{T} = \{ A \subseteq B, B \subseteq \neg C \}$
- $\mathcal{A}_1 = \{ (A(a), .6) \ (C(b), .5) \}$
- $\mathcal{A}_2 = \{ (C(a), .4) \ (B(b), .8), \ (A(b), .7) \}$.

<table>
<thead>
<tr>
<th>\mathcal{I}</th>
<th>\mathcal{I}</th>
<th>$\pi_{\mathcal{A}_1}$</th>
<th>$\pi_{\mathcal{A}_2}$</th>
<th>$\Delta_{\mathcal{T}}^{\text{min}}(\mathcal{I})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{I}_1</td>
<td>$A={a}, B={a}, C={b}$</td>
<td>1</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>\mathcal{I}_2</td>
<td>$A={}, B={}, C={a,b}$</td>
<td>.4</td>
<td>.2</td>
<td>.4</td>
</tr>
<tr>
<td>\mathcal{I}_3</td>
<td>$A={a,b}, B={a,b}, C={}$</td>
<td>.5</td>
<td>.6</td>
<td>.5</td>
</tr>
<tr>
<td>\mathcal{I}_4</td>
<td>$A={b}, B={b}, C={a}$</td>
<td>.4</td>
<td>1</td>
<td>.4</td>
</tr>
</tbody>
</table>
Possibilistic merging

Example

- $\mathcal{T} = \{ A \subseteq B, B \subseteq \neg C \}$
- $\mathcal{A}_1 = \{(A(a), .6) (C(b), .5)\}$
- $\mathcal{A}_2 = \{(C(a), .4) (B(b), .8), (A(b), .7)\}$.

<table>
<thead>
<tr>
<th>\mathcal{I}</th>
<th>\mathcal{I}</th>
<th>$\pi_{\mathcal{A}_1}$</th>
<th>$\pi_{\mathcal{A}_2}$</th>
<th>$\Delta^\text{min}_\mathcal{T}(\mathcal{A})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{I}_1</td>
<td>A={a}, B={a}, C={b}</td>
<td>1</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>\mathcal{I}_2</td>
<td>A={\emptyset}, B={\emptyset}, C={a, b}</td>
<td>.4</td>
<td>.2</td>
<td>.4</td>
</tr>
<tr>
<td>\mathcal{I}_3</td>
<td>A={a, b}, B={a, b}, C={\emptyset}</td>
<td>.5</td>
<td>.6</td>
<td>.5</td>
</tr>
<tr>
<td>\mathcal{I}_4</td>
<td>A={b}, B={b}, C={a}</td>
<td>.4</td>
<td>1</td>
<td>.4</td>
</tr>
</tbody>
</table>

- $[\Delta^\text{min}_\mathcal{T}(\mathcal{A})] = \mathcal{I}_3$
At the syntactic level

Method

1. Define: \(\mathcal{A}_\oplus = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n \)
At the syntactic level

Method

1. Define: $A_\oplus = A_1 \cup A_2 \cup \ldots \cup A_n$

2. Compute $x = Inc(T \cup A_\oplus)$
At the syntactic level

Method

1. Define: \(A_\oplus = A_1 \cup A_2 \cup \ldots \cup A_n \)

2. Compute \(x = \text{Inc}(T \cup A_\oplus) \)

3. \(\Delta_T^\pi(E) = T \cup \{ (\phi, \alpha) : (\phi, \alpha) \in A_\oplus \text{ and } \alpha > x \} \)

Remarks

- Computing \(\Delta_T^\pi(E) \) is done in a polynomial time.
- Question: How to extend the possibilistic merging when the uncertainty scales are incommensurable?
At the syntactic level

Method

1. Define: \(\mathcal{A}_\oplus = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n \)

2. Compute \(x = \text{Inc}(\mathcal{T} \cup \mathcal{A}_\oplus) \)

3. \(\Delta_T^\pi(E) = \mathcal{T} \cup \{ (\phi, \alpha) : (\phi, \alpha) \in \mathcal{A}_\oplus \text{ and } \alpha > x \} \)

Remarks

- Computing \(\Delta_T^\pi(E) \) is done in a polynomial time.
At the syntactic level

Method

1. Define: \(A_\oplus = A_1 \cup A_2 \cup \ldots \cup A_n \)

2. Compute \(x = Inc(T \cup A_\oplus) \)

3. \(\Delta^T_\pi (E) = T \cup \{ (\phi, \alpha) : (\phi, \alpha) \in A_\oplus \text{ and } \alpha > x \} \)

Remarks

- Computing \(\Delta^T_\pi (E) \) is done in a polynomial time.

- Question:
At the syntactic level

Method

1. Define: $\mathcal{A}_\oplus = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots \cup \mathcal{A}_n$

2. Compute $x = \text{Inc}(\mathcal{T} \cup \mathcal{A}_\oplus)$

3. $\Delta^T_\pi (E) = \mathcal{T} \cup \{(\phi, \alpha) : (\phi, \alpha) \in \mathcal{A}_\oplus \text{ and } \alpha > x\}$

Remarks

- Computing $\Delta^T_\pi (E)$ is done in a polynomial time.

- Question:
 How to extend the possibilistic merging when the uncertainty scales are incommensurable?
Compatible-based merging

Principle

Incommensurable merging

=

Family of compatible and commensurable merging

Example

\[\mathcal{T} = \{ A \sqsubseteq B, B \sqsubseteq \neg C \} \]

\[\mathcal{A}_1 = \{ (A(a), .6) (C(b), .5) \} \]

\[\mathcal{A}_2 = \{ (C(a), .4) (B(b), .8), (A(b), .7) \} \].
Compatible-based merging

Principle

Incommensurable merging

=

Family of compatible and commensurable merging

Example

\[\mathcal{T} = \{ A \sqsubseteq B, B \sqsubseteq \neg C \} \]

\[\mathcal{A}_1 = \{(A(a), .6) (C(b), .5)\} \]

\[\mathcal{A}_2 = \{(C(a), .4) (B(b), .8), (A(b), .7)\}. \]

<table>
<thead>
<tr>
<th>(\mathcal{R}1(A_i, f{ij}))</th>
<th>(A_1)</th>
<th>(A_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.6</td>
<td>.4</td>
<td>.4</td>
</tr>
<tr>
<td>.5</td>
<td>.8</td>
<td>.7</td>
</tr>
</tbody>
</table>
Compatible-based merging

Principle

Incommensurable merging

=

Family of compatible and commensurable merging

Example

\[\mathcal{T} = \{ A \sqsubseteq B, B \sqsubseteq \neg C \} \]

\[\mathcal{A}_1 = \{ (A(a), .6) (C(b), .5) \} \]

\[\mathcal{A}_2 = \{ (C(a), .4) (B(b), .8), (A(b), .7) \}. \]

<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{R}1(A_i, f{ij}))</th>
<th></th>
<th>(\mathcal{R}2(A_i, f{ij}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>.6</td>
<td>(A_1)</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td>.5</td>
<td></td>
<td>.2</td>
</tr>
<tr>
<td>(A_2)</td>
<td>.4</td>
<td>(A_2)</td>
<td>.3</td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td></td>
<td>.7</td>
</tr>
<tr>
<td></td>
<td>.7</td>
<td></td>
<td>.4</td>
</tr>
</tbody>
</table>
Compatible-based merging

Principle

Incommensurable merging

= Family of compatible and commensurable merging

Example

\[
\mathcal{T} = \{ A \sqsubseteq B, \; B \sqsubseteq \neg C \}
\]

\[
\mathcal{A}_1 = \{ (A(a), .6) \; (C(b), .5) \}
\]

\[
\mathcal{A}_2 = \{ (C(a), .4) \; (B(b), .8), \; (A(b), .7) \}.
\]

<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{R}1(A_i, f{ij}))</th>
<th></th>
<th>(\mathcal{R}2(A_i, f{ij}))</th>
<th></th>
<th>(\mathcal{R}3(A_i, f{ij}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>.6</td>
<td>(A_1)</td>
<td>.5</td>
<td>(A_1)</td>
<td>.4</td>
</tr>
<tr>
<td></td>
<td>.5</td>
<td>(A_1)</td>
<td>.2</td>
<td>(A_1)</td>
<td>.7</td>
</tr>
<tr>
<td>(A_2)</td>
<td>.4</td>
<td>(A_2)</td>
<td>.3</td>
<td>(A_2)</td>
<td>.3</td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>(A_2)</td>
<td>.7</td>
<td>(A_2)</td>
<td>.6</td>
</tr>
<tr>
<td></td>
<td>.7</td>
<td></td>
<td>.4</td>
<td></td>
<td>.2</td>
</tr>
</tbody>
</table>
Semantic fusion

- Define a partial pre-order over interprétations

\[\mathcal{I} \prec^\mathcal{A} \mathcal{I}' \iff \forall \mathcal{R} \in \mathcal{R}(\mathcal{A}), \mathcal{I} \prec^\mathcal{R} \text{Min} \mathcal{I}' \]

- Select the best ones to define the result of merging

\[\text{Mod}(\Delta^\forall_T(\mathcal{A})) = \{ \mathcal{I} \in \text{Mod}(T) : \exists \mathcal{I}' \in \text{Mod}(T), \mathcal{I}' \prec^\mathcal{A} \mathcal{I} \} \]
Semantic fusion

- Define a partial pre-order over interpretations

\[I <^A I' \iff \forall R \in R(A), I <^R_{\text{Min}} I' \]

- Select the best ones to define the result of merging

\[\text{Mod}(\Delta_T^\forall(A)) = \{ I \in \text{Mod}(T): \not\exists I' \in \text{Mod}(T), I' <^\forall I \} \]
Example (continued)

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$
• $A_1 = \{(A(a), .6), (C(b), .5)\}$
• $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

• $A_1^{R_1} = \{(A(a), .8), (C(b), .4)\}$
• $A_2^{R_1} = \{(C(a), .2), (B(b), .9), (A(b), .6)\}$
• $A_1 = \{(A(a), .6), (C(b), .5)\}$
• $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

• $A_{R1} = \{(A(a), .8), (C(b), .4)\}$
• $A_{R1} = \{(C(a), .2), (B(b), .9), (A(b), .6)\}$

• $A_{R2} = \{(A(a), .4), (C(b), .2)\}$
• $A_{R2} = \{(C(a), .3), (B(b), .6), (A(b), .5)\}$
Example

\[A_1 = \{(A(a), .6), (C(b), .5)\} \]
\[A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\} \]
\[A_{R1}^1 = \{(A(a), .8), (C(b), .4)\} \]
\[A_{R1}^2 = \{(C(a), .2), (B(b), .9), (A(b), .6)\} \]
\[A_{R2}^1 = \{(A(a), .4), (C(b), .2)\} \]
\[A_{R2}^2 = \{(C(a), .3), (B(b), .6), (A(b), .5)\} \]

<table>
<thead>
<tr>
<th>(I)</th>
<th>(\nu_{A_{R1}^1}(I))</th>
<th>Min</th>
<th>(\nu_{A_{R2}^1}(I))</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>< 1, .1 ></td>
<td>.1</td>
<td>< 1, .4 ></td>
<td>.4</td>
</tr>
<tr>
<td>(I_2)</td>
<td>< .2, .1 ></td>
<td>.1</td>
<td>< .6, .4 ></td>
<td>.4</td>
</tr>
<tr>
<td>(I_3)</td>
<td>< .6, .8 ></td>
<td>.6</td>
<td>< .8, .7 ></td>
<td>.7</td>
</tr>
<tr>
<td>(I_4)</td>
<td>< .2, 1 ></td>
<td>.2</td>
<td>< .6, 1 ></td>
<td>.6</td>
</tr>
</tbody>
</table>
Example (continued)

- \(\mathcal{A}_1 = \{(A(a), .6), (C(b), .5)\} \)
- \(\mathcal{A}_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\} \)
- \(\mathcal{A}_{R1}^1 = \{(A(a), .8), (C(b), .4)\} \)
- \(\mathcal{A}_{R1}^2 = \{(C(a), .2), (B(b), .9), (A(b), .6)\} \)
- \(\mathcal{A}_{R2}^1 = \{(A(a), .4), (C(b), .2)\} \)
- \(\mathcal{A}_{R2}^2 = \{(C(a), .3), (B(b), .6), (A(b), .5)\} \)

<table>
<thead>
<tr>
<th>(\mathcal{I})</th>
<th>(\nu_{\mathcal{A}_{R1}}(\mathcal{I}))</th>
<th>Min</th>
<th>(\nu_{\mathcal{A}_{R2}}(\mathcal{I}))</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{I}_1)</td>
<td>(< 1, .1 >)</td>
<td>.1</td>
<td>(< 1, .4 >)</td>
<td>.4</td>
</tr>
<tr>
<td>(\mathcal{I}_2)</td>
<td>(< .2, .1 >)</td>
<td>.1</td>
<td>(< .6, .4 >)</td>
<td>.4</td>
</tr>
<tr>
<td>(\mathcal{I}_3)</td>
<td>(< .6, .8 >)</td>
<td>.6</td>
<td>(< .8, .7 >)</td>
<td>.7</td>
</tr>
<tr>
<td>(\mathcal{I}_4)</td>
<td>(< .2, 1 >)</td>
<td>.2</td>
<td>(< .6, 1 >)</td>
<td>.6</td>
</tr>
</tbody>
</table>
Important computational result

$\text{Mod}(\Delta^\forall_T(A))$ can be directly computed from A_i's in a polynomial time.
Important computational result

$\text{Mod}(\Delta_F^\forall(A))$ can be directly computed from A_i’s in a polynomial time. Thanks to the facts:

- A conflict necessarily implies:
 - One NI axiom.
 - One or two membership assertions.
- A polynomial time algorithm to compute conflicts
Selecting one compatible scale

Normalisation

- α_{A_i}: set of degrees in A_i
- \min_{A_i} (resp. \max_{A_i}) is the minimum (maximum) degree used in α_{A_i}

$$N(\alpha_i) = \frac{\alpha_i - (\min_{A_i} - \epsilon)}{\max_{A_i} - (\min_{A_i} - \epsilon)}$$

- $\alpha_i \in \alpha_{A_i}$ and $0 < \epsilon < \min_{A_i}$
Normalisation

Example

• $A_1=\{(A(a), .6), (C(b), .5)\}$
• $A_2=\{(C(a), .4), (B(b), .8), (A(b), .7)\}$
Normalisation

Example

- $A_1=\{(A(a), .6), (C(b), .5)\}$
- $A_2=\{(C(a), .4), (B(b), .8), (A(b), .7)\}$

$$\min_{A_1} = .5, \min_{A_2} = .4, \max_{A_1} = .6, \max_{A_2} = .8 \text{ et } \epsilon = .01$$
Normalisation

Example

- $A_1 = \{(A(a), .6), (C(b), .5)\}$
- $A_2 = \{(C(a), .4), (B(b), .8), (A(b), .7)\}$

$$\min_{A_1} = .5, \min_{A_2} = .4, \max_{A_1} = .6, \max_{A_2} = .8 \text{ et } \epsilon = .01$$

- $A_1 = \{(A(a), 1), (C(b), .09)\}$
- $A_2 = \{(C(a), 0.02), (B(b), 1), (A(b), .75)\}$
• Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales
Conclusions

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales

- Merging in DL-lite$^\pi$ setting is tractable while it is a hard in a (weighted) propositional setting

- Rational postulates for merging in DL-lite$^\pi$ setting
Conclusions

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales

- Merging in DL-lite$^\pi$ setting is tractable while it is a hard in a (weighted) propositional setting

- Rational postulates for merging in DL-lite$^\pi$ setting

(CSS) $\forall B_i \in E$, if $B_i^* \models \mu$, then $B_i^* \land \bigtriangleup^\mu(E)$ inconsistent
Conclusions

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales

- Merging in DL-lite\(^\pi\) setting is tractable while it is a hard in a (weighted) propositional setting

- Rational postulates for merging in DL-lite\(^\pi\) setting

\[(\text{CSS}) \quad \forall B_i \in E, \text{ if } B_i^* \models \mu, \text{ then } B_i^* \land \Delta^\mu(E) \text{ inconsistent} \]

- In the propositional setting, no way to satisfy CCS when only selecting one compatible scale.
Conclusions

- Safe possibilistic DL-Lite KB Merging without commensurability assumption using compatible scales

- Merging in DL-lite$^\pi$ setting is tractable while it is a hard in a (weighted) propositional setting

- Rational postulates for merging in DL-lite$^\pi$ setting

 (CSS) $\forall B_i \in E$, if $B_i^* \models \mu$, then $B_i^* \land \triangle^\mu(E)$ inconsististant

 - In the propositional setting, no way to satisfy CCS when only selecting one compatible scale.
 - Is-it the case for DL-lite$^\pi$ setting.