
On the Influence of Incoherence in Inconsistency-tolerant
Semantics for Datalog±

C. A. D. Deagustini
M. V. Martinez M. A. Falappa G. R. Simari

Artificial Intelligence Research and Development Laboratory (LIDIA)
Institute for Computer Science and Engineering

Universidad Nacional del Sur - Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
(UNS) (CONICET)



Motivation

The problem of inconsistency in ontologies has been extensively
acknowledged in AI.

Several of the most known inconsistency-tolerant semantics often
assume that there is no incoherence, a problem related to internal
conflicts on the set of constraints [Flouris et al., 2006].

As a result, since they were not designed to acknowledge incoherence,
such semantics for query answering fail at computing good quality
answers in the presence of incoherence.

We argue that, in more general scenarios, we have to distinguish
between those different conflicts, and possibly consider alternative
semantics suitable for dealing with both incoherent and inconsistent
knowledge.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 2 / 31



Talk Outline

This talk comprises three different building blocks:

First, we introduce the notion of incoherence for Datalog± ontologies.

Second, we show how such notion affects most of well-known
inconsistency-tolerant semantics.

Finally, we propose a definition for incoherence-tolerant semantics,
introducing an alternative semantics based on an argumentative
reasoning process that falls under such definition.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 3 / 31



Preliminaries in Datalog±

Datalog± is a family of ontology languages that enables a modular
rule-based style of knowledge representation, which is based on the
combination of four different components.

Database D: a database D is a finite set of atoms.

D : {can sing(simone), rock singer(axl)}

TGDs: a tuple-generating dependency (TGD) σ is a (possibly
existentially quantified) formula which can be used to complete the
database.

rock singer(X )→ can sing(X ),
musician(X )→ ∃Y plays in(X ,Y )

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 4 / 31



Preliminaries in Datalog±

EGDs: equality-generating dependencies (EGDs) are formulas of the
form ∀XΦ(X)→ Xi = Xj which have a two-fold semantics: on the
one hand, they can be used to “unify” a null value to a constant; on
the other hand, they can be used to check if some constant terms in
two atoms are equal.

manage(X ,Y ) ∧manage(X ,Z )→ Y = Z

NCs: Negative constraints (NCs) are formulas of the form
∀XΦ(X)→ ⊥, where the body X is a conjunction of atoms (without
nulls) and the head is the truth constant false, denoted ⊥. Intuitively,
the atoms in the body of a NC cannot be true altogether.

unknown(X ) ∧ famous(X )→ ⊥

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 5 / 31



Datalog± ontologies and consistency

A Datalog± ontology KB = (D,Σ), where Σ = Σ
T
∪ Σ

E
∪ Σ

NC
,

consists of a finite database D of ground atoms, a set of TGDs Σ
T

,
a set of separable EGDs Σ

E
, and a set of negative constraints Σ

NC
.

We use the classical notion for consistency in Datalog±, which states
that consistent ontologies are those that have some models (supersets
of the component D that satisfy every formula in Σ).

Definition (Consistency)

A Datalog± ontology KB = (D,Σ) is consistent iff mods(D,Σ) 6= ∅. We
say that KB is inconsistent otherwise.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 6 / 31



Incoherence in Datalog±

From an operational point of view, inconsistencies appear in a
Datalog± ontology whenever a NC or an EGD is violated (their
bodies can be obtained either in D or by applying TGDs).

A different kind of conflict appears when the TGDs in ΣT cannot be
applied without always leading to the violation of the NCs or EGDs.

This issue is related to that of unsatisfiability of a concept in an
ontology and it is known in the Description Logics community as
incoherence[Flouris et al., 2006].

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 7 / 31



Relevant atoms

Before formalizing the notion of incoherence we need to identify the
set of atoms relevant to a given set of TGDs.

Intuitively, a set of atoms A is relevant to a set T of TGDs iff it holds
that A triggers the application of every TGD in T .

Definition (Relevant Set of Atoms for a Set of TGDs)

Let R be a relational schema, T be a set of TGDs, and A a non-empty set
of ground atoms, both over R. We say that A is relevant to T iff for all
σ ∈ T of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z) it holds that
chase(A,T ) |= ∃X∃YΦ(X,Y).

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 8 / 31



Relevant atoms

Example (Relevant Set of Atoms)

Consider the following constraints:

Σ
T

= {σ1 : supervises(X ,Y )→ supervisor(X ),
σ2 : supervisor(X ) ∧ take decisions(X )→ leads department(X ,D),

σ3 : employee(X )→ works in(X ,D)}

The set
A1 = {supervises(walter , jesse), take decisions(walter), employee(jesse)}
is relevant to Σ

T
, since σ1 and σ3 are directly applicable to A1 and σ2

becomes applicable when we apply σ1.
However, the set A2 = {supervises(walter , jesse), take decisions(gus)} is
not relevant to Σ

T
. Note that even though σ1 is applicable to A2, the

TGDs σ2 and σ3 are never applied in chase(A2,ΣT
), since the atoms in

their bodies are never generated in chase(A2,ΣT
).

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 9 / 31



Satisfiability

Our conception of (in)coherence is based on the notion of
satisfiability of a set of TGDs w.r.t. a set of constraints.

Definition

(Satisfiability of a set of TGDs) Let T ⊆ Σ
T

be a set of TGDs, and
N ⊆ Σ

NC
∪ Σ

E
. The set T is satisfiable w.r.t. N iff there is a set A of

atoms such that A is relevant to T and mods(A,T ∪ N) 6= ∅. We say that
T is unsatisfiable w.r.t. N iff T is not satisfiable w.r.t. N.

Intuitively, a set of dependencies is satisfiable when there is a relevant
set of atoms that does not produce the violation of any constraint in
Σ

NC
∪ Σ

E
, i.e., the TGDs can be satisfied along with the NCs and

EGDs in KB.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 10 / 31



Satisfiability

Example (Satisfiable sets of dependencies)

Σ1
NC

= {τ : risky job(P) ∧ unstable(P)→ ⊥}
Σ1

T
= {σ1 : dangerous work(W ) ∧ works in(W ,P)→ risky job(P),

σ2 : in therapy(P)→ unstable(P)}

The set Σ1
T

is a satisfiable set of TGDs, for instance consider the set

D1 = {dangerous work(police),works in(police,marty), in therapy(rust)}.

D1 is a relevant set for Σ1
T

, however, as we have that no constraint is
violated when we apply Σ1

T
to D1 then Σ1

T
is satisfiable.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 11 / 31



Satisfiability

Example (Unsatisfiable sets of dependencies)

Σ2
NC

= {τ1 : sore throat(X ) ∧ can sing(X )→ ⊥}

Σ2
T

= {σ1 : rock singer(X )→ sing loud(X ),
σ2 : sing loud(X )→ sore throat(X ),
σ3 : rock singer(X )→ can sing(X )}

The set Σ2
T

is an unsatisfiable set of dependencies, as the application of
TGDs {σ1, σ2, σ3} on any relevant set of atoms will cause the violation of
τ1.
For instance, consider the relevant atom rock singer(axl): we have that
mods({rock singer(axl)},Σ2

T
∪ Σ2

NC
∪ Σ2

E
) = ∅, since τ1 is violated. Note

that any set of relevant atoms will cause the violation of τ1.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 12 / 31



Coherence in Datalog±

Based on satisfiability we define coherence for a Datalog± ontology.
Intuitively, an ontology is coherent if there is no subset of their TGDs that
is unsatisfiable w.r.t. the constraints in the ontology.

Definition (Coherence)

Let KB = (D,Σ) be a Datalog± ontology. Then, KB is coherent iff Σ
T

is
satisfiable w.r.t. Σ

NC
∪ Σ

E
, and incoherent otherwise.

Example (Coherence)

Consider the sets of dependencies and constraints defined in the previous
example and an arbitrary database instance D. Clearly, the Datalog±

ontology KB1 = (D,Σ1
T
∪ Σ1

NC
∪ Σ1

E
) is coherent, while

KB2 = (D,Σ2
T
∪ Σ2

NC
∪ Σ2

E
) is incoherent.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 13 / 31



Incoherence and classic inconsistency-tolerant semantics

Classic inconsistency-tolerant techniques do not account for coherence
issues since they assume that such kind of problems will not appear.

Nevertheless, if we consider that both components in the ontology
evolve then certainly incoherence is prone to arise.

Moreover, note that an incoherent KB will induce an inconsistent KB
when the database instance contains any set of atoms that is relevant
to the unsatisfiable sets of TGDs.

Then, it may be important for inconsistency-tolerant techniques to
consider incoherence as well, since as we will show if not treated
appropriately an incoherent set of TGDs may produce meaningless
answers for relevant atoms in D (in the worst case, it could produce
an empty set of answers).

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 14 / 31



Repairs and inconsistency-tolerant semantics

A basic notion in classic inconsistency-tolerant semantics is that off
repair, which is a model of the set of integrity constraints that is
maximally close, i.e., “as close as possible” to the original database.

Depending on how repairs are obtained we can have different
semantics.

For instance, in AR semantics [Flouris et al., 2010]an atom a is
entailed from a Datalog± ontology KB, denoted KB |=AR a, iff a is
classically entailed from every ontology that can be built from every
possible repair (a maximally consistent subset of the D component
that after its application to Σ

T
respects every constraint in Σ

E
∪Σ

NC
).

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 15 / 31



Repairs and incoherence

Incoherence has a great influence when calculating repairs, as can be
seen in the following result: independently of the semantics (i.e., AR
or variants like CAR) no atom that is relevant to an unsatisfiable set
of TGDs belongs to a repair of an incoherent KB.

Lemma

Let KB = (D,Σ) be an incoherent Datalog± ontology where
Σ = Σ

T
∪ Σ

E
∪ Σ

NC
and R(KB) be the set of (A-Box or Closed A-Box)

repairs of KB. If A ⊆ D is relevant to some unsatisfiable set U ∈ U(KB)
then A * R for every R ∈ R(KB).

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 16 / 31



Repairs and incoherence

Example

Consider the atom rock singer(axl) and the set
U ⊂ Σ

T
= {σ1 : rock singer(X )→ sing loud(X ), σ2 : sing loud(X )→

sore throat(X ), σ4 : rock singer(X )→ can sing(X )}.

It is easy to show that this atom does not belong to any repair. Consider
the A-Box repairs adapted to Datalog± (maximally consistent subsets of
the component D). We have that mods(rock singer(axl),Σ) = ∅, as the
NC τ1 : sore throat(X ) ∧ can sing(X )→ ⊥ is violated.

Moreover, clearly this violation happens for every set A ⊆ D such that
rock singer(axl) ∈ A, and thus we have that mods(A,Σ) = ∅, i.e.,
rock singer(axl) cannot be part of any A-Box repair for the KB.
We can show an analogous example for CAR-semantics.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 17 / 31



Incoherence and answers in AR/CAR

Then, every atom that is relevant to an unsatisfiable set of TGDs
cannot be AR-consistently (resp, CAR-consistently) entailed.

Proposition

If A ⊆ D is relevant to some unsatisfiable set U ⊆ Σ
T

then KB 2AR A and
KB 2CAR A.

In the limit case that every atom in the database instance is relevant
to some unsatisfiable subset of the TGDs in the ontology then the set
of AR-answers, denoted AAR , (resp, CAR-answers - ACAR) is empty.

Both results can be straightforwardly extended to other repair based
inconsistency-tolerant semantics such as ICAR and ICR [Lembo et al.,
2010].

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 18 / 31



Incoherence-tolerant semantics

Since they were not develop to consider such kind of issues,
incoherence greatly affects classic inconsistency-tolerant semantics.

Notice that in our example rock singer(axl) should be an answer; we
do not know whether or not Axl can sing or has a sore throat, but we
can at least agree that he is a rock singer.

Nevertheless, such atom is not part of the answers of repair-based
semantics such as AR or CAR.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 19 / 31



Incoherence-tolerant semantics

Intuitively, we say that a query answering semantics is tolerant to
incoherence if it is possible for it to entail atoms that trigger
incoherent sets of TGDs as answers.

Definition (Incoherence-tolerant semantics)

Let KB = (D,Σ) be a Datalog± ontology where Σ = Σ
T
∪ Σ

E
∪ Σ

NC
. A

query answering semantics S is said to be tolerant to incoherence (or
incoherency-tolerant) iff there exists A ⊆ D and U ∈ U(KB) such that A is
relevant to U and it holds that KB |=S A.

AR and CAR semantics are not incoherence-tolerant semantics.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 20 / 31



Defeasible Datalog±

Defeasible Datalog± is a variation of Datalog± that enables
argumentative reasoning in Datalog±.

To do this, a Datalog± ontology is extended with a set of defeasible
atoms and defeasible TGDs; thus, a Defeasible Datalog± ontology
contains both (classical) strict knowledge and defeasible knowledge.

Defeasible Datalog± Ontologies. A defeasible Datalog± ontology
KB consists of a finite set F of ground atoms, called facts, a finite set
D of defeasible atoms, a finite set of TGDs ΣT , a finite set of
defeasible TGDs ΣD , and a finite set of binary constraints Σ

E
∪ Σ

NC
.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 21 / 31



Defeasible Datalog± ontologies

Example

The information in our running example can be better represented with
the defeasible ontology KB = (F ,D, Σ′T , ΣD ,ΣNC), where
F = {can sing(simone), sing loud(ronnie), has fans(ronnie)} and
D = {rock singer(axl),manage(band1 , richard)}. For instance, we change
the fact stating that richard manages band1 to a defeasible one, since
reports indicates that band1 is looking for a new manager.
Also, we change some of the TGDs into defeasible TGDs to make clear
that the connection between the head and body is weaker.

ΣT ′ = {sing loud(X )→ sore throat(X ), rock singer(X )→ can sing(X )
ΣD = {rock singer(X ) �– sing loud(X ), has fans(X ) �– famous(X )}

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 22 / 31



Conflicts in Defeasible Datalog±

Based on the information encoded in a defeasible Datalog± ontology,
conflicting information can be derived.

Conflicts in defeasible Datalog± ontologies come, as in classical
Datalog±, from the violation of NCs or EGDs.

Intuitively, two atoms are in conflict whenever they can both be
derived from the ontology and together map to the body of a NC or
they violate an EGD.

Conflicts in classical argumentation are inherently binary, since they
are based on contrariness, i.e., a contrary to b and b contrary to a
means that they are in conflict. Here, we restrict NCs and EGDs to
binary ones to mirror such kind of conflicts.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 23 / 31



Arguments in Defeasible Datalog±

When conflicts arise we use a dialectical process to decide which piece
of information is such that no acceptable reasons can be put forward
against it.
Reasons are supported by arguments; an argument is an structure
that supports a claim from evidence through the use of a reasoning
mechanism.
It is possible to build arguments for conflicting atoms, and so
arguments can attack each other.

Example

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 24 / 31



Warranting and answers

The combination of arguments, attacks and a comparison criterion �
(used to establish whether and argument defeats another one in
conflict with it) gives raise to Datalog± argumentation frameworks,
denoted F.

An atom is warranted in F iff there exists an undefeated argument in
favor of the atom.

Example

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 25 / 31



Warranting and answers

We define a semantics, denoted as D2 (Defeasible Datalog±), based
on the use of argumentative inference.

Such semantics relies on the transformation of classic Datalog±

ontologies to defeasible ones and then obtaining answers from the
transformed one by means of an argumentation-based process.

Intuitively, the transformation of a classic ontology to a defeasible one
involves transforming every atom and every TGD in the classic
ontology to its defeasible version.

Finally, a literal is an answer for a classical Datalog± ontology KB
under the D2 semantics iff it is warranted in the transformation of KB
to a defeasible one.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 26 / 31



Influence of incoherence in Defeasible Datalog±

We can show that one relevant atom L to an unsatisfiable set is
warranted (and thus an answer), provided that the comparison
criterion � is such that it warrants some argument in its favor.

Proposition

Let KB be a Datalog± ontology defined over a relational schema R, and
KB′ be a Defeasible Datalog± ontology such that D(KB) = KB′. Finally,
let L ∈ D and U ∈ U(KB) such that L is relevant to U. Then, it holds
that there exists � such that KB �D2

�
L.

Such comparison criterion can always be found.

Corollary

Given a Datalog± ontology KB there exists � such that D2
� applied to KB

is tolerant to incoherence.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 27 / 31



Influence of incoherence in Defeasible Datalog±

Example

Then, clearly KB′ |=F rock singer(axl), and thus
KB �D2

�
rock singer(axl).

Note that the atom rock singer(axl) is warranted under any criterion
comparison �, and thus we have not needed to perform any restriction on
the criterion.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 28 / 31



Conclusions

Incoherence is an important problem in knowledge representation and
reasoning, but most of the works in query answering for Datalog±

ontologies and DLs either completely ignore the possibility of conflicts
or have focused on consistency issues, assuming that no conflict arise
in the constraints.

We have introduced the concept of incoherence for Datalog±

ontologies, relating it to the presence of sets of TGDs such that their
application inevitably yield the violation in the set of negative
constraints and equality-generating dependencies.

We have shown how incoherence affects classic inconsistency-tolerant
semantics to the point that for some incoherent ontologies these
semantics may produce no useful answer.

Finally, we have introduced the concept of incoherency-tolerant
semantics, and shown a particular semantics satisfying that property.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 29 / 31



References I

Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plexousakis,
and Holger Wache.
Inconsistencies, negations and changes in ontologies.
In AAAI, pages 1295–1300. AAAI Press, 2006.

D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo.
Inconsistency-tolerant semantics for description logics.
In Proc. of RR, pages 103–117, 2010.

Maria Vanina Martinez, Cristhian Ariel David Deagustini, Marcelo A.
Falappa, and Guillermo Ricardo Simari.
Inconsistency-tolerant reasoning in datalog± ontologies via an
argumentative semantics.
In proc. of IBERAMIA 2014, pages 15–27, 2014.

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 30 / 31



The end

Comments? Questions?

Thank you!

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 31 / 31



The end

Comments? Questions?

Thank you!

Deagustini et al. (UNS - CONICET) Incoherence in Datalog± 31 / 31


	Preliminaries
	Incoherence in Datalog math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg
	Incoherence influence on classic inconsistency-tolerant semantics
	Incoherence-tolerant semantics
	Conclusions

