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Overview

O Quasi-classic logic and quasi -classic models for logic programs
O Paraconsistent relational model
O The advantages of p araconsistent relational m odel

O Quasi-classic models using paraconsistent relational model

O The future works and short comings




Quasi-Classic Logic

O

It is a paraconsistent logic.

O

UnlikeBe |l n aqudwsal ued | ogi ¢ [ 5]classiclBgici?2f er 6 s U é
supports disjunctive syllogism, disjunction introduction, etc.

O

It is moves one step towards classical logic.

O

Its power comes from the resolution inference rule.




Quasi-Classic Logic Programs (1)

O Z. Zh aqugsbdassic logic pr ogr ams [ 1] i nspired fror
classic logic notion and S a k m @@ aconsistent minimal models notion [3].

O Z. Z h aqugst-dassic logic program determines minimal quasi  -classic
models based on the set inclusion.

O Logic rules of the form:
r (rule) =lgV Vi lpi1...ln

Literals are either positive or negative atoms.




Quasi-Classic Logic Programs (2)

Fixed Point Semantics. Let P be a positive extended disjunctive logic pro-
gram and 7 be a set of interpretations, then Tp(Z) = (J;c7 Tr({)

(0, if lyq1,...,Ln C I for some

ground constraint < l,41...0l,from P.

{J | for each ground rule

it loV Vi, ¢ lht1 ...l such that
{lny1-- ln} €I, J=1TUlJ, J where

| J' € Lits(focus(lp vV ---V 1,,I))}, otherwise.

O Tp(I) always terminates in finite time.

Let oV BV v be a clause. Then focus(aV BV vy, a) =6V~



Paraconsistent Relational Model (1)

O The normal relation stores only information that is believed to be true.

O The paraconsistent relation [4]  stores information that is believed to be  true
and believed to be false.

O we define two types of algebraic operators:

O Set Theoretic: union ( (}) complement (  (unary)), intersection ( ), and
difference ( _(binary)).

O Relation Theoretic: Join ( tkiselection ( )dand projection ( ). 7




Paraconsistent Relational Model (2)

Normal Relation (Closed World Assumption):

{ set of attributes ()}
tuple (7(2))
tuple (7(X))

Paraconsistent Relation (Open World Assumption):

{ set of attributes ()}
tuple (7(X))




Paraconsistent Relational Model (3)

Union. The union of R and S, denoted RUS, is a paraconsistent relation
on scheme X, given that

(RUS)T =RTUST,(RUS)”" =R NS~

Complement. The complement of R, denoted —R, is a paraconsistent
relation on scheme X, given that

~R*=R ,~R =Rt




Paraconsistent Relational Model (4)

Intersection. The intersection of R and S, denoted RNS, is a paraconsis-
tent relation on scheme 3., given that

(RNS)T =RTNST,(RAS)" =R US™

Difference. The difference of R and S, denoted R—S, is a paraconsistent
relation on scheme X2, given that

(R—S)"=R™NS™,(R-8)" =R UST



Paraconsistent Relational Model

Example (5)
X} {X}
Example 1. Let R = (@) | ands=| (¢)
(b) (b)
(¢) (@)
Then
X (union)

(a)
RUS =| (b)
(b)

(intersection)




Paraconsistent Relational Model

Example (6)
X | {({j)}
RNS = ((Z)) R—5= 0
©) (c)

X}

|
~— || [ ~—




Paraconsistent Relational Model (7)

Join. The join of R and S, denoted RxS, is a paraconsistent relation on
scheme > U A given that

(RNS)"‘ — Rt S+, (RIXIS)_ - (R—)EUA U (S_)EUA

Projection. The projection of R onto A , denoted 7a(R), is a paraconsis-
tent relation on A given that

ia(R)t = ma(RT)EVA
ia(R)” ={t € 7(A) | t*Y2 C (R7)*V2}

where A is the usual projection over A of ordinary relations.




Paraconsistent Relational Model (8)

Selection. Let F' be any logic formula involving attribute names in >,
constant symbols, and any of these symbols {==, =, A, V}. Then the selection
of R by F, denoted ¢r(R), is a paraconsistent relation on scheme 3, given that

cr(R)T =0p(R)T,6r(R)” = R™ Uo_p(7(X))

where o is a usual selection of tuples satistying F' from ordinary relations.




Paraconsistent Relational Model
Example(9)

Example 2.

Let R =

(X, Y)

(b, 0)
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. Here attributes are ordered sequence

and tuples are lists of values.



RS =

(X.,Y, Z)

(b,c,a)
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Paraconsistent Relational Model
Example(10)
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Advantages of Using Paraconsistent
Relational Model

O Three main advantages:
O works with a set of tuples instead of a tuple at a time,
O can apply various laws of equality,

O suits good for query intensive applications.




Quasi-Classic Models Construction (1)

O Here, we consider positive extended disjunctive deductive databases.

O The model construction involves two steps:

O associate every literal to a paraconsistent relation and construct an equation for every
clause;

O solve the equations.




Quasi-Classic Models Construction (2)

O Itis hard to represent disjunctive information in paraconsistent relation.

O We introduce disjunctive paraconsistent relation.

Paraconsistent Relation Disjunctive Paraconsistent Relation

{ set of attributes (X)} { set of attributes sets (2*)}

tuple (7(X)) disjunctive tuple (7(2*))
tuple (7(X)) disjunctive tuple (7(2%))
tuple (7(X)) conjunctive tuple (7(2%))
tuple (7(X)) conjunctive tuple (7(2*))

We allow sometimes the conjunctive tuple in the positive
part.




Quasi-Classic Models Construction
Example (3)

Let P be a positive extended disjunctive deductive database. It has the following
facts and rules:

T(CL, c),p(a),p(c), —lf((l, b), S(C)

w(X)Vg(X)V-pX)+rX,Y),s(Y)

w(X) V g(X) v ~p(X) & (X, )

Converting the rules into equations:
1. (7 x) (w(X)Ug(X)U—p(X)) [X]= (7x) (r(X, Y )s(Y))) T[X]
2. (73 (w(X)Ug(X)U—p(X)) [X]= (73 (= F(X,Y)))F[X]

LHS in both equations are the same. So,

(T3 (w(X)0g(X)0U—p(X)) [X]= (7rxy (r(X, Y)as(Y)) T [(X]U(F ey (= f(X, Y))) F[X]




Quasi-Classic Models Construction
Example (4)

O First, facts are added to the paraconsistent relation.
SModel = {r,p, s, f} where

L[] FeH, [,
—|_(as¢) a5 (c) | (o) N (a,b)

O Copies are created. Copies are the same, but have different relation
Name. SModel = {7/, p’, s’, f'} (COPIES) where

I __ {X’Y} ! __ {é)} /o {Y}
" Lag |7 ~HI =L@
r_ {X,Y}
e




Quasi-Classic Models Construction
Example (5)

O Mapping both definite tuples and disjunctive tuples from LHS of the
equation to the disjunctive paraconsistent relation.

{wX} | {g.X} | {p.X}
(a) vV (a) V (a)
(a)
(c)

DRy =

O We renamed the attribute before we map.

O Inconsistency is in the disjunctive relation.




Quasi-Classic Models Construction
Example (6)

O Applying focus, which removes complementary tuples from the disjunctive
relation with respectto  SModel .

DR, = FOCUSp(DRy, SModel)

{w.X} | {9.X} | {p.X}
(a) VvV (a)

DRy =

(a)
(¢)




Quasi-Classic Models Construction
Example (7)

O The disjunctive paraconsistent relation contains disjunctive information
which leads to more relations called proper disjunctive paraconsistent
relations. Therefore,

PDR, = {PDR}, PDR? PDR} }

{U(Jj)(} {9- X} | {p.X} {w.X} | {9.X} | {p.X}
R = PDR? — (@) V (a) =
(¢) c
{w. X} {g(.))c} {p-X} &
PDRl : (a)
(¢)




Quasi-Classic Models Construction
Example (8)

Relationalizing : removing paraconsistent unions among paraconsistent relations.
Then, create an exact relation in DModel for every relationin SModel .




