From Classical to Consistent Query Answering under Existential Rules

Andreas Pieris
Institute of Information Systems, Vienna University of Technology, Austria

Joint work with Thomas Lukasiewicz, Maria Vanina Martinez and Gerardo I. Simari

OntoLP, Argentina, Buenos Aires, July 25, 2015
Ontology-based Query Answering (OBQA)

\[\langle D, O \rangle \models \text{Query} \iff D \land O \models \text{Query} \]
A Simple Example

\[D = \]

\[\text{professor}(\text{John}) \]
\[\text{fellow}(\text{John}) \]

\[O = \]

\[\forall X (\text{professor}(X) \rightarrow \exists Y (\text{faculty}(X) \land \text{teaches}(X,Y))) \]
\[\forall X (\text{fellow}(X) \rightarrow \text{faculty}(X)) \]

\[\forall M \models \langle D, O \rangle : M = \]

\[\ldots \text{teaches}(\text{John},\#) \ldots \]

\[\exists X (\text{teaches}(\text{John},X)) \quad \checkmark \]

\[\{ \text{John} \rightarrow \text{John}, X \rightarrow \# \} \]
A Simple Example

\[D = \]

- \texttt{professor(John)}
- \texttt{fellow(John)}

\[O = \]

\[\forall X (\text{professor}(X) \rightarrow \exists Y (\text{faculty}(X) \land \text{teaches}(X, Y))) \]
\[\forall X (\text{fellow}(X) \rightarrow \text{faculty}(X)) \]
\[\forall X (\text{professor}(X) \land \text{fellow}(X) \rightarrow \perp) \]

no model \Rightarrow every query is entailed
Handling Data Inconsistencies

- The data are likely to be inconsistent with the ontology

- Standard semantics fails: everything is inferred - not meaningful answers

- Two approaches to inconsistency-handling:
 - Resolve the inconsistencies - ideal, but not always possible
 - Live with the inconsistencies - inconsistency-tolerant semantics
ABox Repair (AR) Semantics

• Standard inconsistency-tolerant semantics

• IDEA: The query must be entailed by every database repair
 \(\subseteq \)-maximal consistent subsets of the database

[Leombo et al., RR 2010]
ABox Repair (AR) Semantics

\[\langle D, O \rangle \models_{AR} \text{Query} \iff \forall R \in \{R_1, \ldots, R_n\}: \langle R, O \rangle \models \text{Query} \]
ABox Repair (AR) Semantics: Example

\[D = \]

- professor(John)
- fellow(John)

\[O = \]

\[\forall X (\text{professor}(X) \rightarrow \exists Y (\text{faculty}(X) \land \text{teaches}(X, Y))) \]

\[\forall X (\text{fellow}(X) \rightarrow \text{faculty}(X)) \]

\[\forall X (\text{professor}(X) \land \text{fellow}(X) \rightarrow \bot) \]

\[\langle D, O \rangle \models_{AR} \text{faculty}(John) \]

\[R_1 = \]

- professor(John)

\[\langle R_1, O \rangle \models \text{faculty}(John) \]

\[R_2 = \]

- fellow(John)

\[\langle R_2, O \rangle \models \text{faculty}(John) \]
ABox Repair (AR) Semantics: Example

\[D = \]

\[\begin{align*} &\text{professor}(John) \\
&\text{fellow}(John) \end{align*} \]

\[O = \]

\[\begin{align*} &\forall X (\text{professor}(X) \rightarrow \exists Y (\text{faculty}(X) \land \text{teaches}(X,Y))) \\
&\forall X (\text{fellow}(X) \rightarrow \text{faculty}(X)) \\
&\forall X (\text{professor}(X) \land \text{fellow}(X) \rightarrow \bot) \end{align*} \]

\[\langle D, O \rangle \models_{AR} \exists X (\text{teaches}(John,X)) \quad \times \]

\[\langle R_1, O \rangle \models \exists X (\text{teaches}(John,X)) \quad \checkmark \]

\[\langle R_2, O \rangle \models \exists X (\text{teaches}(John,X)) \quad \times \]
AR Semantics

- Lots of recent work and complexity results for description logics
 [Lembo et al., RR 2010 / Rosati, IJCAI 2011 / Bienvenu, AAAI 2012 / Bienvenu & Rosati, IJCAI 2013]

- This talk is about existential rules + negative constraints
 [Lukasiewicz, Martinez & Simari, ODBASE 2013 / Lukasiewicz, Martinez, P. & Simari, AAAI 2015]

\[
\forall X (\varphi(X) \rightarrow \exists Y (\psi(X,Y))) + \forall X (\varphi(X) \rightarrow \bot)
\]
Our Goal

Perform an in-depth complexity analysis of consistent query answering under the main classes of existential rules + negative constraints

- Combined
- Bounded-arity combined
- Fixed-program combined
- Data

generic complexity results - from classical to consistent query answering
Combined Complexity

\[M \text{ complexity of classical query answering under } L \text{ is } C\text{-complete} \]

\[\downarrow \]

\[M \text{ complexity of consistent query answering under } L[\perp] \text{ is:} \]

\[\Pi_{P,2}\text{-complete} \quad \text{if} \quad C = \text{NP} \]

\[C\text{-complete} \quad \text{if} \quad C \supseteq \text{PSPACE} \text{ and } C \text{ is deterministic} \]
Combined Complexity: Upper Bounds

Guess and check algorithm (for the complement of the problem)

Input: $D, O \in \mathbb{L}[\bot], Q$

1. Guess $R \subseteq D$ - a possible repair

2. Verify that R is a repair, i.e., $\langle R, O \rangle$ is consistent and R is \subseteq-maximal

3. Verify that $\langle R, O \rangle$ does not entail Q

no harder than classical query answering under \mathbb{L}

\Rightarrow our problem is in $\text{coNP}^C \Rightarrow$ in

\[
\begin{cases}
\text{coNP}^{NP} = \text{co}\Sigma_{P,2} = \Pi_{P,2} & \text{if } C = \text{NP} \\
\text{coNP}^C = \text{co}C = C & \text{if } C \supseteq \text{PSPACE} \text{ and } C \text{ is deterministic}
\end{cases}
\]
Combined Complexity

\[\text{combined or ba-combined or fp-combined} \quad \text{class of } \exists\text{-rules} \quad \text{complexity class} \]

\[M \text{ complexity of classical query answering under } L \text{ is } C\text{-complete} \]

\[\downarrow \]

\[M \text{ complexity of consistent query answering under } L[L[\bot]] \text{ is:} \]

\[\Pi_{P,2}\text{-complete} \quad \text{if} \quad C = \text{NP} \]

\[C\text{-complete} \quad \text{if} \quad C \supseteq \text{PSPACE} \& C \text{ is deterministic} \]
A Strong $\Pi_{P,2}$-hardness Result

Consistent query answering under the single constraint

$$\forall X \forall Y \forall Z \forall W \ (p(X,Y,Z) \land p(W,X,Z) \rightarrow \bot)$$

while the database and the query use only binary and ternary predicates

(by reduction from satisfiability of 2QBF formulas)

\[\downarrow\]

For every class \mathcal{L} of existential rules, the fp-combined complexity of consistent query answering under $\mathcal{L}[\bot]$ is $\Pi_{P,2}$-hard
Combined Complexity

combined or ba-combined or fp-combined class of \exists-rules complexity class

\mathcal{M} complexity of classical query answering under \mathbb{L} is \mathcal{C}-complete

\mathcal{M} complexity of consistent query answering under $\mathbb{L}[\perp]$ is:

$\Pi_{P,2}$-complete if $\mathcal{C} = \text{NP}$

\mathcal{C}-complete if $\mathcal{C} \supseteq \text{PSPACE}$ & \mathcal{C} is deterministic
Data Complexity

Data complexity of classical query answering under \mathbb{L} is \mathbb{C}-complete

\Downarrow

Data complexity of consistent query answering under $\mathbb{L}[\bot]$ is:

coNP-complete if $\mathbb{C} \subseteq \text{PTIME}$
Data Complexity: Upper Bounds

Guess and check algorithm (for the complement of the problem)

Input: D, $O \in \mathbb{L}[\bot]$, Q

1. Guess $R \subseteq D$ - a possible repair
2. Verify that R is a repair, i.e., $\langle R, O \rangle$ is consistent and R is \subseteq-maximal
3. Verify that $\langle R, O \rangle$ does not entail Q

no harder than classical query answering under \mathbb{L}

\Rightarrow our problem is in $\text{coNP}^C \Rightarrow$ in coNP (since $\text{NP}^{\text{PTIME}} = \text{NP}$)
A Strong coNP-hardness Result

Consistent query answering under the single constraint

\[\forall X (p(X) \land s(X) \rightarrow \bot) \]

while the query is fixed

(by reduction from 2+2UNSAT)

\[\Downarrow \]

For every class \(\mathbb{L} \) of existential rules, the data complexity of consistent query answering under \(\mathbb{L}[\bot] \) is coNP-hard
Data Complexity

data complexity of classical query answering under L is C-complete

\downarrow

data complexity of consistent query answering under $L[\perp]$ is:

coNP-complete if $C \subseteq \text{PTIME}$
From Classical to Consistent Query Answering

(ba-/fp)combined complexity:

\[(\text{in NP}) \rightarrow \Pi_{P,2}\text{-complete}\]
\[
\mathbb{C}\text{-complete}, \mathbb{C} \supseteq \text{PSPACE} \ & \ \mathbb{C} \text{ is deterministic} \rightarrow \mathbb{C}\text{-complete}
\]

data complexity:

\[\text{in } \mathbb{C} \subseteq \text{PTIME} \rightarrow \text{coNP-complete}\]

an (almost) complete picture for the main classes of existential rules + negative constraints
Existential Rules

\[\forall X (\varphi(X) \rightarrow \exists Y (\psi(X,Y))) \]

conjunctions of atoms

- Classical query answering under existential rules is undecidable
 see, e.g., [Beeri & Vardi, ICALP 1981]

- Expressive decidable fragments - field of intense research
 (e.g., Montpellier, Dresden, Calabria, Oxford, Vienna, …)

- Main decidability paradigms: acyclicity, guardedness & stickiness
Acyclic Existential Rules

- The predicate graph is acyclic

\[\forall X (\text{professor}(X) \rightarrow \exists Y (\text{faculty}(X) \land \text{teaches}(X, Y))) \]

\[\forall X (\text{fellow}(X) \rightarrow \text{faculty}(X)) \]
(Frontier-)Guarded Existential Rules

- **Frontier-guardedness:** There exists a body-atom that contains the frontier

 \[\forall X \forall Y \forall Z (\text{supervisorOf}(X, Y) \land \text{supervisorOf}(Y, Z) \rightarrow \text{manager}(X)) \]

- **Guardedness:** There exists a body-atom that contains all the \(\forall \)-variables

 \[\forall X \forall Y (\text{supervisorOf}(X, Y) \land \text{emp}(Y) \rightarrow \text{emp}(X)) \]

- **Linearity:** There exists only one atom in the body

 \[\forall X (\text{employee}(X) \rightarrow \exists Y (\text{supervisorOf}(Y, X) \land \text{employee}(Y))) \]
Sticky Existential Rules

- Join-variables **stick** to the inferred atoms

\[\forall X \forall Y \forall Z (q(X,Y) \land p(Y,Z) \rightarrow \exists W (t(X,Y,W))) \]

\[\forall X \forall Y \forall Z (t(X,Y,Z) \rightarrow \exists W (s(Y,W))) \]

\[\forall X \forall Y \forall Z (q(X,Y) \land p(Y,Z) \rightarrow \exists W (t(X,Y,W))) \]

\[\forall X \forall Y \forall Z (t(X,Y,Z) \rightarrow \exists W (s(X,W))) \]
Existential Rules + Negative Constraints

Finite Expansion Set

Acyclic[⊥]

Linear[⊥]

ELHI⊥

Guarded[⊥]

Bounded Treewidth Set

Frontier-Guarded[⊥]

Finite Unification Set

Sticky[⊥]

DL-LiteR
(ba-/fp)combined complexity:

\begin{align*}
\text{in NP} & \rightarrow \Pi_{p,2}\text{-complete} \\
\mathbb{C}\text{-complete, } \mathbb{C} & \supseteq \text{PSPACE} \quad \& \quad \mathbb{C} \text{ is deterministic} & \rightarrow \mathbb{C}\text{-complete}
\end{align*}

data complexity:

\begin{align*}
\text{in } \mathbb{C} & \subseteq \text{PTIME} & \rightarrow \text{coNP-complete}
\end{align*}

we simply need to exploit existing results on classical query answering
Classical Query Answering

<table>
<thead>
<tr>
<th>Class</th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>NEXPTIME</td>
<td>NEXPTIME</td>
<td>NP</td>
<td>in AC₀</td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>NP</td>
<td>NP</td>
<td>in AC₀</td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>NP</td>
<td>NP</td>
<td>in AC₀</td>
</tr>
</tbody>
</table>
Classical Query Answering

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>NEXPTIME</td>
<td>NEXPTIME</td>
<td>NP</td>
<td>in AC<sub>0</sub></td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>NP</td>
<td>NP</td>
<td>in AC<sub>0</sub></td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>NP</td>
<td>NP</td>
<td>in AC<sub>0</sub></td>
</tr>
</tbody>
</table>

- Until recently, it was generally believed that it is EXPTIME
- The obvious algorithm does not work - models of double-exponential size
Classical Query Answering

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[\bot]</td>
<td>NEXPTIME</td>
<td>NEXPTIME</td>
<td>NP</td>
<td>in AC<sub>0</sub></td>
</tr>
<tr>
<td>Frontier-Guarded[\bot]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Guarded[\bot]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Linear[\bot]</td>
<td>PSPACE</td>
<td>NP</td>
<td>NP</td>
<td>in AC<sub>0</sub></td>
</tr>
<tr>
<td>Sticky[\bot]</td>
<td>EXPTIME</td>
<td>NP</td>
<td>NP</td>
<td>in AC<sub>0</sub></td>
</tr>
</tbody>
</table>

- **Upper bound**: non-deterministically construct a proof of the query
- **Lower bound**: by reduction from a TILING problem
Classical Query Answering

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>NEXPTIME</td>
<td>NEXPTIME</td>
<td>NP</td>
<td>in AC₀</td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>NP</td>
<td>PTIME</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>NP</td>
<td>NP</td>
<td>in AC₀</td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>NP</td>
<td>NP</td>
<td>in AC₀</td>
</tr>
</tbody>
</table>

(ba-/fp)combined complexity:

\[
\text{in NP} \rightarrow \Pi_{P,2}\text{-complete} \quad \text{C-complete, C} \supseteq \text{PSPACE} & \quad \text{C is deterministic} \rightarrow \text{C-complete}
\]

data complexity:

\[
\text{in C} \subseteq \text{PTIME} \rightarrow \text{coNP-complete}
\]
Consistent Query Answering

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>?</td>
<td>?</td>
<td>Π<sub>P,2</sub></td>
<td>coNP</td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>Π<sub>P,2</sub></td>
<td>coNP</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>Π<sub>P,2</sub></td>
<td>coNP</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>Π<sub>P,2</sub></td>
<td>Π<sub>P,2</sub></td>
<td>coNP</td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>Π<sub>P,2</sub></td>
<td>Π<sub>P,2</sub></td>
<td>coNP</td>
</tr>
</tbody>
</table>

Data complexity:

- (ba-/fp)combined complexity:
 - in NP → Π_{P,2}-complete
 - C-complete, C ⊃ PSPACE & C is deterministic → C-complete

- **Data complexity:**
 - in C ⊆ PTIME → coNP-complete
Complexity of Acyclic[\bot]

- The guess and check algorithm gives a $\text{coNP}^{\text{NEXPTIME}}$ upper bound

- The class $\text{NP}^{\text{NEXPTIME}}$ lies at a higher level of the strong exponential hierarchy

- The SEH collapses to its Δ_2 level \Rightarrow $\text{NP}^{\text{NEXPTIME}} = \text{P}^{\text{NE}}$

- P^{NE} is a deterministic class \Rightarrow $\text{coP}^{\text{NE}} = \text{P}^{\text{NE}}$
Consistent Query Answering

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>NEXP - P^{NE}</td>
<td>NEXP - P^{NE}</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>$\Pi_{P,2}$</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>$\Pi_{P,2}$</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
</tbody>
</table>

$P^{NE} \subseteq \text{coNEXPTIME}^{NP}$

Consistent Query Answering

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>NEXP - P^{NE}</td>
<td>NEXP - P^{NE}</td>
<td>Π_{P,2}</td>
<td>coNP</td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>Π_{P,2}</td>
<td>coNP</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>Π_{P,2}</td>
<td>coNP</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>Π_{P,2}</td>
<td>Π_{P,2}</td>
<td>coNP</td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>Π_{P,2}</td>
<td>Π_{P,2}</td>
<td>coNP</td>
</tr>
</tbody>
</table>

Conjecture: Consistent query answering under Acyclic[⊥] is coNEXPTIME^{NP-c}.

Data Intractable

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>ba-combined</th>
<th>fp-combined</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[⊥]</td>
<td>NEXP - P^{NE}</td>
<td>NEXP - P^{NE}</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Frontier-Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>2EXPTIME</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Guarded[⊥]</td>
<td>2EXPTIME</td>
<td>EXPTIME</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Linear[⊥]</td>
<td>PSPACE</td>
<td>$\Pi_{P,2}$</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
<tr>
<td>Sticky[⊥]</td>
<td>EXPTIME</td>
<td>$\Pi_{P,2}$</td>
<td>$\Pi_{P,2}$</td>
<td>coNP</td>
</tr>
</tbody>
</table>

but, what about tractability results w.r.t. the data complexity?

…consider approximations of the AR semantics
Intersection ABox Repair (IAR) Semantics

• One of the basic sound approximations of the AR semantics

• **IDEA:** The query must be entailed by the intersection of the database repairs \(\subseteq\)-maximal consistent subsets of the database

[Leombo et al., RR 2010]
Intersection ABox Repair (IAR) Semantics

\[\langle D, O \rangle \models_{\text{IAR}} \text{Query} \iff \langle R_n, O \rangle \models \text{Query} \]
Data Complexity under the IAR Semantics

<table>
<thead>
<tr>
<th>Property</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[\perp]</td>
<td>in AC_0</td>
</tr>
<tr>
<td>Frontier-Guarded[\perp]</td>
<td>coNP</td>
</tr>
<tr>
<td>Guarded[\perp]</td>
<td>coNP</td>
</tr>
<tr>
<td>Linear[\perp]</td>
<td>in AC_0</td>
</tr>
<tr>
<td>Sticky[\perp]</td>
<td>in AC_0</td>
</tr>
</tbody>
</table>

via first-order rewritability - a generic result can be established
First-Order Rewritability (FO-Rewritability)

∀D : ⟨D,O⟩ ⊨ Q ⇔ D ⊨ Q_{FO}

∀D : ⟨D,O⟩ ⊨_{IAR} Q ⇔ D ⊨ Q_{FO}
UCQ-Rewritability

\[\forall D : \langle D, O \rangle \models Q \iff D \models Q_{UCQ} \]

\[\forall D : \langle D, O \rangle \models_{\text{IAR}} Q \iff D \models Q_{UCQ} \]
From UCQ-Rewritability to FO-Rewritability

class of \exists-rules

classical query answering under \mathbb{L} is UCQ-Rewritable

\[\downarrow\]

consistent query answering under the IAR semantics for $\mathbb{L}[\bot]$ is FO-Rewritable
Data Complexity under the IAR Semantics

<table>
<thead>
<tr>
<th>Term</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic[\perp]</td>
<td>in AC_0</td>
</tr>
<tr>
<td>Frontier-Guarded[\perp]</td>
<td>coNP</td>
</tr>
<tr>
<td>Guarded[\perp]</td>
<td>coNP</td>
</tr>
<tr>
<td>Linear[\perp]</td>
<td>in AC_0</td>
</tr>
<tr>
<td>Sticky[\perp]</td>
<td>in AC_0</td>
</tr>
</tbody>
</table>

via first-order rewritability - a generic result can be established
Key Message

We can transfer complexity results from classical to consistent query answering in a generic and uniform way

…with some unexpected exceptions - Acyclic[⊥]

Thank you!