From Classical to Consistent Query Answering under Existential Rules

Andreas Pieris

Institute of Information Systems, Vienna University of Technology, Austria

Joint work with Thomas Lukasiewicz, Maria Vanina Martinez and Gerardo I. Simari

Ontology-based Query Answering (OBQA)

$$\langle D, O \rangle \vDash Query \Leftrightarrow D \land O \vDash Query$$

A Simple Example

$$D = 0 =$$

professor(John)
fellow(John)

$$\forall X \ (professor(X) \rightarrow \exists Y \ (faculty(X) \land teaches(X, Y)))$$
 $\forall X \ (fellow(X) \rightarrow faculty(X))$

$$\forall M \vDash \langle D, O \rangle$$
 : $M = \underbrace{ ... \ teaches(John, \#) \ ...}$ $\{John \rightarrow John, X \rightarrow \#\}$ $\exists X \ (teaches(John, X))$

A Simple Example

D = O = $\forall X (professor(X) \rightarrow \exists Y (faculty(X) \land teaches(X, Y)))$ fellow(John) $\forall X (fellow(X) \rightarrow faculty(X))$

no model \Rightarrow every query is entailed

 $\forall X (professor(X) \land fellow(X) \rightarrow \bot)$

Handling Data Inconsistencies

The data are likely to be inconsistent with the ontology

Standard semantics fails: everything is inferred - not meaningful answers

- Two approaches to inconsistency-handling:
 - Resolve the inconsistencies ideal, but not always possible
 - Live with the inconsistencies inconsistency-tolerant semantics

ABox Repair (AR) Semantics

Standard inconsistency-tolerant semantics

IDEA: The query must be entailed by every database repair

⊆-maximal consistent subsets of the database

ABox Repair (AR) Semantics

 $\langle D, O \rangle \vDash_{AR} Query \Leftrightarrow \forall R \in \{R_1, ..., R_n\}: \langle R, O \rangle \vDash Query$

ABox Repair (AR) Semantics: Example

$$D = O = \\ \hline professor(John) \\ fellow(John) \\ \hline \begin{tabular}{ll} \hline VX (professor(X) \rightarrow $\exists Y$ (faculty(X) \land teaches(X,Y)))) \\ \hline VX (fellow(X) \rightarrow faculty(X)) \\ \hline VX (professor(X) \land fellow(X) \rightarrow \bot) \\ \hline \begin{tabular}{ll} $\langle D,O\rangle \vDash_{\mathsf{AR}}$ faculty(\mathsf{John}) \checkmark \\ \hline \begin{tabular}{ll} $\langle P_1,O\rangle \vDash_{\mathsf{AR}}$ faculty(\mathsf{John}) \checkmark \\ \hline \begin{tabular}{ll} $\langle P_2,O\rangle \vDash_{\mathsf{AR}}$ faculty(\mathsf{John}) \checkmark \\ \hline \begin{tabular}{ll} $\langle P_2,O\rangle \vDash_{\mathsf{AR}}$ faculty(\mathsf{John}) \checkmark \\ \hline \end{tabular}$$

ABox Repair (AR) Semantics: Example

$$D = O = \\ \hline professor(John) \\ fellow(John) \\ \hline \begin{tabular}{ll} $ \forall X \ (professor(X) \to \exists Y \ (faculty(X) \land teaches(X,Y))) \\ $ \forall X \ (fellow(X) \to faculty(X)) \\ $ \forall X \ (professor(X) \land fellow(X) \to \bot) \\ \hline \end{tabular}$$

$$\begin{tabular}{ll} $ \langle D,O \rangle \vDash_{\mathsf{AR}} \exists X \ (teaches(\mathsf{John},X)) & \mathbf{x} \\ \hline \end{tabular}$$

$$\begin{tabular}{ll} $ \langle P_1,O \rangle \vDash \exists X \ (teaches(\mathsf{John},X)) & \mathbf{x} \\ \hline \end{tabular}$$

$$\begin{tabular}{ll} $ \langle P_2,O \rangle \vDash \exists X \ (teaches(\mathsf{John},X)) & \mathbf{x} \\ \hline \end{tabular}$$

AR Semantics

Lots of recent work and complexity results for description logics

[Lembo et al., RR 2010 / Rosati, IJCAI 2011 / Bienvenu, AAAI 2012 / Bienvenu & Rosati, IJCAI 2013]

This talk is about existential rules + negative constraints

[Lukasiewicz, Martinez & Simari, ODBASE 2013 / Lukasiewicz, Martinez, P. & Simari, AAAI 2015]

$$\forall X (\varphi(X) \rightarrow \exists Y (\psi(X,Y))) + \forall X (\varphi(X) \rightarrow \bot)$$

Our Goal

Perform an in-depth complexity analysis of consistent query answering under the

main classes of existential rules + negative constraints

- Combined
- Bounded-arity combined
- Fixed-program combined
- Data

generic complexity results - from classical to consistent query answering

Combined Complexity

combined or ba-combined or fp-combined class of ∃-rules complexity class

M complexity of classical query answering under L is C-complete

M complexity of consistent query answering under $L[\bot]$ is:

$$\Pi_{P,2}$$
-complete if $\mathbb{C} = NP$

 \mathbb{C} -complete if $\mathbb{C} \supseteq \mathsf{PSPACE} \& \mathbb{C}$ is deterministic

Combined Complexity: Upper Bounds

Guess and check algorithm (for the complement of the problem)

Input: D, $O \in \mathbb{L}[\perp]$, Q

- 1. Guess $R \subseteq D$ a possible repair
- 2. Verify that R is a repair, i.e., $\langle R, O \rangle$ is consistent and R is \subseteq -maximal
- 3. Verify that $\langle R, O \rangle$ does not entail Q

no harder than classical query answering under L

$$\Rightarrow \text{ our problem is in } coNP^{\mathbb{C}} \Rightarrow \text{ in } \begin{cases} coNP^{NP} = co\Sigma_{P,2} = \Pi_{P,2} & \text{if } \mathbb{C} = NP \\ \\ coNP^{\mathbb{C}} = co\mathbb{C} = \mathbb{C} & \text{if } \mathbb{C} \supseteq PSPACE \\ \\ \mathbb{C} \text{ is deterministic} \end{cases}$$

Combined Complexity

combined or ba-combined or fp-combined class of ∃-rules complexity class

M complexity of classical query answering under L is C-complete

M complexity of consistent query answering under $L[\bot]$ is:

$$\Pi_{P,2}$$
-complete if $\mathbb{C} = NP$

 \mathbb{C} -complete if $\mathbb{C} \supseteq \mathsf{PSPACE} \& \mathbb{C}$ is deterministic

A Strong $\Pi_{P,2}$ -hardness Result

Consistent query answering under the single constraint

$$\forall X \forall Y \forall Z \forall W \ (p(X, Y, Z) \land p(W, X, Z) \rightarrow \bot)$$

while the database and the query use only binary and ternary predicates

(by reduction from satisfiability of 2QBF formulas)

For every class \mathbb{L} of existential rules, the fp-combined complexity of consistent query answering under $\mathbb{L}[\bot]$ is $\Pi_{P,2}$ -hard

Combined Complexity

combined or ba-combined or fp-combined class of ∃-rules complexity class

M complexity of classical query answering under L is C-complete

M complexity of consistent query answering under $L[\bot]$ is:

$$\Pi_{P,2}$$
-complete if $\mathbb{C} = NP$

 \mathbb{C} -complete if $\mathbb{C} \supseteq \mathsf{PSPACE} \& \mathbb{C}$ is deterministic

Data Complexity

data complexity of consistent query answering under $\mathbb{L}[\perp]$ is:

 $\begin{array}{ccc} \text{coNP-complete} & \text{if} & \mathbb{C} \subseteq \text{PTIME} \end{array}$

Data Complexity: Upper Bounds

Guess and check algorithm (for the complement of the problem)

Input: D, $O \in \mathbb{L}[\perp]$, Q

- 1. Guess $R \subseteq D$ a possible repair
- 2. Verify that R is a repair, i.e., $\langle R, O \rangle$ is consistent and R is \subseteq -maximal
- 3. Verify that $\langle R, O \rangle$ does not entail Q

no harder than classical query answering under L

 \Rightarrow our problem is in coNP^C \Rightarrow in coNP (since NP^{PTIME} = NP)

A Strong coNP-hardness Result

Consistent query answering under the single constraint

$$\forall X (p(X) \land s(X) \rightarrow \bot)$$

while the query is fixed

(by reduction from 2+2UNSAT)

For every class $\mathbb L$ of existential rules, the data complexity of consistent query answering under $\mathbb L[\bot]$ is coNP-hard

Data Complexity

data complexity of consistent query answering under $\mathbb{L}[\perp]$ is:

 $\begin{array}{ccc} \text{coNP-complete} & \text{if} & \mathbb{C} \subseteq \text{PTIME} \end{array}$

From Classical to Consistent Query Answering

```
(ba-/fp)combined complexity:  \text{in NP} \ \to \ \Pi_{P,2}\text{-complete}   \mathbb{C}\text{-complete}, \ \mathbb{C} \ \supseteq \ \mathsf{PSPACE} \ \& \ \mathbb{C} \ \text{is deterministic} \ \to \ \mathbb{C}\text{-complete}
```

data complexity:

in $\mathbb{C} \subseteq \mathsf{PTIME} \to \mathsf{coNP}\text{-complete}$

an (almost) complete picture for the main classes of existential rules +
negative constraints

Existential Rules

$$\forall \mathbf{X} \ (\varphi(\mathbf{X}) \to \exists \mathbf{Y} \ (\psi(\mathbf{X}, \mathbf{Y})))$$

$$\uparrow \qquad \qquad \uparrow$$
 conjunctions of atoms

- Classical query answering under existential rules is undecidable see, e.g., [Beeri & Vardi, ICALP 1981]
- Expressive decidable fragments field of intense research (e.g., Montpellier, Dresden, Calabria, Oxford, Vienna, ...)
- Main decidability paradigms: acyclicity, guardedness & stickiness

Acyclic Existential Rules

The predicate graph is acyclic

$$\forall X (professor(X) \rightarrow \exists Y (faculty(X) \land teaches(X, Y)))$$

 $\forall X (fellow(X) \rightarrow faculty(X))$

(Frontier-)Guarded Existential Rules

Frontier-guardedness: There exists a body-atom that contains the frontier

$$\forall X \forall Y \forall Z (supervisorOf(X,Y) \land supervisorOf(Y,Z) \rightarrow manager(X))$$

Guardedness: There exists a body-atom that contains all the ∀-variables

$$\forall X \forall Y \ (supervisorOf(X,Y) \land emp(Y) \rightarrow emp(X))$$

Linearity: There exists only one atom in the body

$$\forall X (employee(X) \rightarrow \exists Y (supervisorOf(Y,X) \land employee(Y)))$$

Sticky Existential Rules

Join-variables stick to the inferred atoms

Existential Rules + Negative Constraints

Bounded Treewidth Set Frontier-Guarded[⊥] Finite Expansion Set Finite Unification Set Acyclic[⊥] **Guarded**[⊥] Sticky[⊥] Linear[⊥] \mathcal{ELHI}_{\perp} $\mathsf{DL}\text{-Lite}_\mathcal{R}$

From Classical to Consistent Query Answering

```
(ba-/fp)combined complexity:  \text{in NP} \ \to \ \Pi_{p,2}\text{-complete}   \mathbb{C}\text{-complete}, \ \mathbb{C} \ \supseteq \ \mathsf{PSPACE} \ \& \ \mathbb{C} \ \text{is deterministic} \ \to \ \mathbb{C}\text{-complete}
```

data complexity:

in $\mathbb{C} \subseteq \mathsf{PTIME} \to \mathsf{coNP}\text{-complete}$

we simply need to exploit existing results on classical query answering

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXPTIME	NEXPTIME	NP	in AC ₀
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	NP	PTIME
Guarded[⊥]	2EXPTIME	EXPTIME	NP	PTIME
Linear[⊥]	PSPACE	NP	NP	in AC ₀
Sticky[⊥]	EXPTIME	NP	NP	in AC ₀

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXPTIME	NEXPTIME	NP	in AC ₀
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	NP	PTIME
Guarded[⊥]	2EXPTIME	EXPTIME	NP	PTIME
Linear[⊥]	PSPACE	NP	NP	in AC ₀
Sticky[⊥]	EXPTIME	NP	NP	in AC ₀

- Until recently, it was generally believed that it is EXPTIME
- The obvious algorithm does not work models of double-exponential size

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXPTIME	NEXPTIME	NP	in AC ₀
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	NP	PTIME
Guarded[⊥]	2EXPTIME	EXPTIME	NP	PTIME
Linear[⊥]	PSPACE	NP	NP	in AC ₀
Sticky[⊥]	EXPTIME	NP	NP	in AC ₀

- Upper bound: non-deterministically construct a proof of the query
- Lower bound: by reduction from a TILING problem

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXPTIME	NEXPTIME	NP	in AC ₀
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	NP	PTIME
Guarded[⊥]	2EXPTIME	EXPTIME	NP	PTIME
Linear[⊥]	PSPACE	NP	NP	in AC ₀
Sticky[⊥]	EXPTIME	NP	NP	in AC ₀

```
(\text{ba-/fp}) \text{combined complexity:} \\ \text{in NP} \quad \rightarrow \quad \Pi_{P,2}\text{-complete} \\ \mathbb{C}\text{-complete}, \ \mathbb{C} \ \supseteq \ \mathsf{PSPACE} \ \& \ \mathbb{C} \ \text{is deterministic} \quad \rightarrow \quad \mathbb{C}\text{-complete} \\ \text{data complexity:} \\ \text{in } \mathbb{C} \ \subseteq \ \mathsf{PTIME} \quad \rightarrow \quad \mathsf{coNP\text{-complete}} \\ \end{aligned}
```

Consistent Query Answering

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	?	?	$\Pi_{P,2}$	coNP
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	$\Pi_{P,2}$	coNP
Guarded[⊥]	2EXPTIME	EXPTIME	$\Pi_{P,2}$	coNP
Linear[⊥]	PSPACE	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP
Sticky[⊥]	EXPTIME	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP

```
(\text{ba-/fp}) \text{combined complexity:} \\ \text{in NP} \quad \rightarrow \quad \Pi_{P,2}\text{-complete} \\ \mathbb{C}\text{-complete}, \ \mathbb{C} \ \supseteq \ \mathsf{PSPACE} \ \& \ \mathbb{C} \ \text{is deterministic} \quad \rightarrow \quad \mathbb{C}\text{-complete} \\ \text{data complexity:} \\ \text{in } \mathbb{C} \ \subseteq \ \mathsf{PTIME} \quad \rightarrow \quad \mathsf{coNP\text{-complete}} \\ \end{aligned}
```

Complexity of Acyclic[⊥]

The guess and check algorithm gives a coNPNEXPTIME upper bound

The class NP^{NEXPTIME} lies at a higher level of the strong exponential hierarchy

• The SEH collapses to its Δ_2 level \Rightarrow NPNEXPTIME = PNE [Hemachandra, J. Comput. Syst. Sci. 1989]

P^{NE} is a deterministic class ⇒ coP^{NE} = P^{NE}

Consistent Query Answering

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXP - P ^{NE}	NEXP - P ^{NE}	$\Pi_{P,2}$	coNP
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	$\Pi_{P,2}$	coNP
Guarded[⊥]	2EXPTIME	EXPTIME	$\Pi_{P,2}$	coNP
Linear[⊥]	PSPACE	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP
Sticky[⊥]	EXPTIME	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP

 $\mathsf{P}^{\mathsf{NE}} \,\subseteq\, \mathsf{coNEXPTIME}^{\mathsf{NP}}$

[Hemachandra, J. Comput. Syst. Sci. 1989]

Consistent Query Answering

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXP - P ^{NE}	NEXP - P ^{NE}	$\Pi_{P,2}$	coNP
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	$\Pi_{P,2}$	coNP
Guarded[⊥]	2EXPTIME	EXPTIME	$\Pi_{P,2}$	coNP
Linear[⊥]	PSPACE	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP
Sticky[⊥]	EXPTIME	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP

Conjecture: Consistent query answering under Acyclic[⊥] is coNEXPTIME^{NP}-c

Data Intractable

	Combined	ba-combined	fp-combined	Data
Acyclic[⊥]	NEXP - P ^{NE}	NEXP - P ^{NE}	$\Pi_{P,2}$	coNP
Frontier-Guarded[⊥]	2EXPTIME	2EXPTIME	$\Pi_{P,2}$	coNP
Guarded[⊥]	2EXPTIME	EXPTIME	$\Pi_{P,2}$	coNP
Linear[⊥]	PSPACE	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP
Sticky[⊥]	EXPTIME	$\Pi_{P,2}$	$\Pi_{P,2}$	coNP

but, what about tractability results w.r.t. the data complexity?

...consider approximations of the AR semantics

Intersection ABox Repair (IAR) Semantics

One of the basic sound approximations of the AR semantics

IDEA: The query must be entailed by the intersection of the database repairs

⊆-maximal consistent subsets of the database

Intersection ABox Repair (IAR) Semantics

Data Complexity under the IAR Semantics

Acyclic[⊥]	in AC ₀
Frontier-Guarded[⊥]	coNP
Guarded[⊥]	coNP
Linear[⊥]	in AC ₀
Sticky[⊥]	in AC ₀

via first-order rewritability - a generic result can be established

First-Order Rewritability (FO-Rewritability)

$$\forall D : \langle D, O \rangle \vDash Q \iff D \vDash Q_{FO}$$

$$\forall D : \langle D, O \rangle \vDash_{\mathsf{IAR}} \mathbf{Q} \iff D \vDash \mathbf{Q}_{\mathsf{FO}}$$

UCQ-Rewritability

$$\forall D : \langle D, O \rangle \vDash Q \iff D \vDash Q_{UCQ}$$

$$\forall D : \langle D, O \rangle \vDash_{\mathsf{IAR}} Q \Leftrightarrow D \vDash Q_{\mathsf{UCQ}}$$

From UCQ-Rewritability to FO-Rewritability

class of ∃-rules

classical query answering under L is UCQ-Rewritable

consistent query answering under the IAR semantics for $\mathbb{L}[\bot]$ is FO-Rewritable

Data Complexity under the IAR Semantics

Acyclic[⊥]	in AC ₀
Frontier-Guarded[⊥]	coNP
Guarded[⊥]	coNP
Linear[⊥]	in AC ₀
Sticky[⊥]	in AC ₀

via first-order rewritability - a generic result can be established

Key Message

We can transfer complexity results

from classical to consistent query answering

in a generic and uniform way

...with some unexpected exceptions - Acyclic[\perp]

Thank you!